English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

To the origin of Icelandic rhyolites: insights from partially melted leucocratic xenoliths

MPS-Authors
/persons/resource/persons100972

Gurenko,  Andrey A.
Geochemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Gurenko, A. A., Bindeman, I. N., & Sigurdsson, I. A. (2015). To the origin of Icelandic rhyolites: insights from partially melted leucocratic xenoliths. Contributions to Mineralogy and Petrology, 169(5): 49. doi:10.1007/s00410-015-1145-4.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0029-28D0-B
Abstract
We have studied glass-bearing leucocratic (granitic to Qz-monzonitic) crustal xenoliths from the Tindfjoll Pleistocene volcanic complex, SW Iceland. The xenoliths consist of strongly resorbed relicts of anorthitic plagioclase, K-rich feldspar and rounded quartz in color-less through pale to dark-brown interstitial glass. Spongy clinopyroxene and/or rounded or elongated crystals of orthopyroxene are in subordinate amount. Magnetite, ilmenite, zircon, apatite, allanite and/or chevkinite are accessory minerals. The xenoliths more likely are relicts of earlier-formed, partially melted Si-rich rocks or quartz-feldspar-rich crystal segregations, which suffered latter interaction with hotter and more primitive magma(s). Icelandic lavas are typically low in delta O-18 compared to mantle-derived, "MORB"-like rocks (similar to 5.6 +/- 0.2 %), likely due to their interaction with, or contamination by, the upper-crustal rocks affected by rain and glacial melt waters. Surprisingly, many quartz and feldspar crystals and associated colorless to light-colored interstitial glasses of the studied xenoliths are not low but high in delta O-18 (5.1-7.2 %, excluding three dark-brown glasses of 4-5 %). The xenoliths contain abundant, low-to high-delta O-18 (2.4-6.3 %) young zircons (U-Pb age 0.2-0.27 +/- 0.03 Ma; U-Th age 0.16 +/- 0.07 Ma), most of them in oxygen isotope equilibrium with interstitial glasses. The delta O-18 values >5.6 % recorded in the coexisting zircon, quartz, feldspar and colorless interstitial glass suggest crystallization from melts produced by fusion of crustal rocks altered by sea-water, also reflecting multiple melting and crystallization events. This suggests that "normal"-delta O-18 silicic magmas may not be ultimately produced by crystallization of mafic, basaltic magmas. Instead, our new single-crystal laser fluorination and ion microprobe O-isotope data suggest addition of diverse partial crustal melts, probably originated from variously altered and preconditioned crust.