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Abstract
DIANA is an end-to-end computational model of speech pro-
cessing, which takes as input the speech signal, and provides
as output the orthographic transcription of the stimulus, a
word/non-word judgment and the associated estimated reaction
time. So far, the model has only been tested for Dutch.
In this paper, we extend DIANA such that it can also process
North American English. The model is tested by having it sim-
ulate human participants in a large scale North American En-
glish lexical decision experiment. The simulations show that
DIANA can adequately approximate the reaction times of an
average participant (r = 0.45). In addition, they indicate that
DIANA does not yet adequately model the cognitive processes
that take place after stimulus offset.
Index Terms: reaction times, local speed, participant-model
comparison, computational modeling, spoken word recognition

1. Introduction
Lexical Decision is a versatile paradigm for investigating the
cognitive processes involved in comprehending spoken and
written words. The advent of (large-scale) experimental ref-
erence data is essential for comparing results of different exper-
iments and the explanatory power of computational models and
their underlying theories. For the recognition of written words,
reference data are being created by e.g. the multi-language lex-
icon projects at the Center for Reading Research of Ghent Uni-
versity [1, 2, 3]. For spoken word recognition, BALDEY [4] is
an example of a large-scale reference database for Dutch, while
at the Department of Linguistics of the University of Alberta,
the Massive Auditory Lexical Decision (MALD) project aims
at providing a reference database for North American English1.
From MALD, first data (denoted MALDPI) are now available
from a pilot experiment created to test stimuli and design for
the full MALD database. BALDEY and MALD aim to provide
an open source platform for developing and testing models of
spoken word comprehension.

For BALDEY, we have shown that an end-to-end compu-
tational model of spoken word recognition, DIANA [5, 6], can
accurately simulate reaction times (RT) averaged over 20 partic-
ipants. DIANA can also simulate RTs of individual participants.
While the theory and the computational model underlying DI-
ANA is language-independent, the model has as yet only been
tested for Dutch. In this paper we investigate whether DIANA
can be extended for North American English, by using test data
from MALDPI. Testing DIANA with a very different set of data

1http://aphl.artsrn.ualberta.ca/?p=517

Figure 1: Overview of DIANA. The model consists of three in-
terrelated components: (•1) an Activation component that takes
speech as input; its output is a weighted lattice of hypotheses,
evolving over time (•2) a Decision component, which outputs
the recognized word/non-word item and an estimated reaction
time (•3) an Execution component which models the time it
takes from the mental decision until the eventual overt action
(e.g. pressing a button).

might disclose issues in the model that are open for improve-
ment. At the same time, the test might uncover issues related
to the different design of MALD. While BALDEY selected a
medium-size lexicon (about 2700 existing words), small enough
to have all participants score all words, MALD aims for a very
large lexicon, of which each participant scores only a very small
(1%) subset; as a result, most words in MALDPI have been
scored by a very small number of listeners. All participants in
BALDEY were native speakers of Dutch, whereas a substantial
proportion of the listeners in MALDPI do not have English as
their first language. Another, perhaps less important, difference
between the two projects is that BALDEY used a female speaker,
whereas the MALD speaker is male.

2. DIANA

As many influential models of decision making (e.g. [7]), DI-
ANA consists of three components: an activation, a decision,
and an execution component (Fig. 1). As a computational model
of spoken word recognition, DIANA differs from previous mod-
els, such as [8, 9, 10], in that it takes real speech as input and
provides reaction times as output. Conceptually, the activation
component in DIANA shares principles with Shortlist-B [11],
while the decision component is reminiscent of theories pro-
posed by [12, 13, 14, 15, 16].
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2.1. Activation component

The input of DIANA is a real acoustic signal. The activation
component uses the signal to compute time-varying activations
for all words in the lexicon. The current implementation eas-
ily handles lexicons of approximately 40,000 entries. Entries
in the lexicon are phonetically specified as (possibly several)
sequences of phone symbols. Each entry is accompanied by a
prior probability, which is derived from the relative frequency of
the word in a text corpus. The activation of a word is determined
by a weighted combination of the bottom-up acoustic match and
the top-down prior probability. For the English implementation
of DIANA we have used the unigram frequency counts in the
Google 2012 N-gram corpus [17] and the CMU Pronouncing
Dictionary [18]. Transcriptions of the words in MALDPI that
were not present in the CMU dictionary were partly generated
automatically, and partly constructed manually.

The activation component shares with e.g. Shortlist [8] and
TRACE [9] the concepts of activation and competition between
words in the mental lexicon as a function of phonetic infor-
mation in the input. Similar to Shortlist B [11], words (and
word sequences) are represented as competing paths in a lattice
without lateral inhibition. The activation scores of word can-
didates are computed by a decoding algorithm borrowed from
Automatic Speech Recognition (ASR). Its implementation is
based on HTK [19]. For processing the utterances in MALDPI,
speech is transformed into a sequence of vectors with spectral
information based on Perceptual Linear Prediction (cf. [20])
augmented with delta and delta-delta parameters at a rate of 100
frames/s. This frame rate determines the phonetic evidence to
be updated each 10 ms.

The acoustic models used in DIANA were taken from the
American P2FA-Vislab project [21, 22] and adapted to the
Canadian speaker who produced the stimuli used in MALDPI,
by HERest in HTK [19], on a held out set of words from that
speaker. The resulting acoustic models were assessed by per-
forming a word recognition task with a uniform LM for this
speaker: on an independent test set of 500 words and with a
very high perplexity of 36,000, we obtained a word accuracy
of 82%, which was judged sufficient for our goal. Word confu-
sions were found to be phonetically highly plausible.

Because the model must be able to distinguish between real
words and non-words, DIANA uses two decoders in parallel, as
in keyword detection [23]. The first decoder uses the lexicon
to score lexical candidates. The parallel decoder computes the
activation of phone sequences that are constrained by a proba-
bilistic phone bigram.

Fig. 2 shows an example of the evolution of activations of
the leading and runner-up word candidates for the acoustic in-
put ’display’. The figure only shows the evolution of the top-
30 runner-ups, which amounts to the top 0.1% of all potential
word candidates; the majority of the remaining nearly 36,000
word candidates show activations staying far below the leading
candidate activation.

2.2. Decision component

Contrary to a family of neurally-based models of decision mak-
ing that emphasize the role of lateral inhibition between neu-
ronal populations (e.g., [24, 25]), the Decision component in
DIANA does not assume active inhibition between competitors.
Our approach is based on recent mathematical-psychological
models of decision and reaction times [12, 13, 14, 15, 16, 26,
27]. In DIANA, a decision about the winning word candidate is
made at time t when the activation of the leading candidate ex-

Figure 2: Activation scores for the leading word candidate and
the top-30 runners-up for the word display. In this example
DIANA will take a decision close to (or at) word offset, due to
the very small differences between the leading candidate and
competitors such as displays, displace, displaced, displacing,
displaying, displayed, disclaim, desolate.

ceeds the activations of all competitors with a specified thresh-
old (a model parameter) θ. The distance between the leader and
the runner-up varies in a non-linear way over time, due to the
non-linear increase of acoustic evidence over time (see Fig. 2)
and, evidently, the word-dependent density of the lexical neigh-
borhood. Depending on the value of θ, the threshold may or
may not be exceeded before stimulus offset. In the latter case,
DIANA uses an extension of Hick’s Law [16] to estimate the ad-
ditional choice reaction time, i.e., the additional time it takes to
choose between a number of alternatives left at stimulus offset:

choiceRT = β ·H (1)

where H denotes the entropy −
∑
pi log2(pi) of the set of

probabilities pi of the active word candidates at stimulus offset.
If there is only one candidate left, H = 0 and so the additional
choiceRT equals zero. In a typical lexical decision experiment,
the entropy at word offset tends to be rather large, due to the
presence of non-word phone sequences that are very similar to
real words.

2.3. Execution component

The execution component models the process from mental de-
cision to overt behavior (e.g., pressing a button). In the present
version of DIANA, the execution component adds a fixed delay
to the time between the time it takes the decision component to
identify the word. This delay models the time it takes to execute
a planned movement.

3. Processing RT sequences
Reaction times are supposed to reflect the processes underly-
ing speech comprehension [28]; therefore, they are a measure
for the complexity of the cognitive processes [29]. In lexical
decision experiments, RTs always come in sequences, and raw
sequences tend to show fairly low correlations (0.1 – 0.3) be-
tween participants [5]. This is because individual RTs are su-
perpositions of several different processes, each with their own
time scale. At the shortest time scale, the features of individual
stimuli (and the cognitive processes of interest) are at stake. In
lexical decision experiments, these features include the lexical
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status of the stimulus, its morphological complexity, the density
of its lexical neighborhood, the word or lemma frequency, etc.
(e.g. [29]). At the longest time scale, personal characteristics of
the participants (e.g., their physical and mental condition, age,
gender, and general cognitive abilities) affect the average RTs in
a session [7]. At an intermediate time scale, slowly fluctuations
of attention, change in strategy, learning effects, and fatigue af-
fect the local speed in RT sequences, e.g. [30, 31]. Arguably,
local speed effects are the most important processes that reduce
the correlation between RT sequences. This is especially true in
experiments in which all participants process stimuli in a differ-
ent order.

In [5] we proposed a Moving Average (MA) filter to remove
these local speed effects from RT sequences (detrending). The
operation of the MA filter is controlled by a single parameter
0 ≤ α ≤ 1, which determines the number of preceding stim-
uli that affect the RT on the present stimulus. With data from
BALDEY, it has been shown that values α ≈ 0.15 substantially
increased the between-participant correlations. This range of α
means that approximately six preceding stimuli affect the RT
to the present stimulus, which is in agreement with findings re-
ported in other reaction time studies where typical ranges of five
to ten stimuli were found to have an effect [32, p. 409].

4. The Spoken English Lexicon data
MALDPI

The MALDPI corpus contains data from a large scale auditory
lexical decision experiment with over 26,000 words and nearly
10,000 non-words. The words were selected from a combi-
nation of three corpora: 8,000 words were extracted from the
Buckeye Corpus [33], 21,000 most frequent words from COCA
frequency list [34], 10,000 words from ELP [35], and 1,000
compound words, which when combined and after removal of
duplicate entries resulted in a list of 28,510 words. About 9%
of words were not yet processed in MALDPI. The list was de-
signed to cover most of the high frequency words in the English
lexicon; all morphological complexity was retained, as were
function words. Proper nouns were removed from the list. Non-
words were created using Wuggy [36] with the CMU dictionary
set as the language and set to 2/3 overlap with the input item.
Wuggy allowed us to quickly create nonwords written in IPA
symbols based on the words in the corpus. The shortest words
are monosyllabic, the longest comprise seven syllables.

Participants were undergraduate students in introductory
Linguistics courses from a diverse linguistic background, with
ages ranging from 17-44 years (mean 20). In an experiment ses-
sion, a participant scored a set of 800 items, 400 words and 400
non-words. Due to the very large number of words and non-
words, most items have only been scored by a small number of
participants (min. 1, max. 12, mean 4.15). With participants
showing implausible output removed, MALDPI contains RTs
from 250 sessions, from native and non-native listeners.

RT sequences from an experiment as complex as MALDPI,
in which many stimuli were only scored once, pose special chal-
lenges for detecting data points that are implausible, for exam-
ple an RT that is improbably short or long. MA filter detrend-
ing for removing local speed effects from the individual RT se-
quences is part of the cleaning operation.

5. Results and discussion
For the assessment of DIANA, we selected the RT data of the
1,200 word types that were scored by 10 to 12 participants in

Figure 3: Average between-participant correlation for coherent
participants as a function of detrending parameter α (along hor-
izontal axis).

MALDPI. This data set included RTs from both natives and
non-natives. The RT scores were log transformed. Only trials
with RT > 400 ms and logRT < µ+ 2σ (µ and σ of the logRT
distribution), and for which the word/non-word decision was
correct, were taken into account, leaving 9,880 trials.

Compared to BALDEY, MALDPI is more diverse in terms
of the participants’ language background and seems to be more
diverse in terms of participant behavior. On BALDEY, the in-
crease on the between-participant correlation by detrending was
on average 25%; on MALDPI this gain was less than 15%. In
MALDPI several participant pairs show correlations < 0.05
between their logRT sequences (with or without detrending).
There is, however, also a subgroup of participants with mutual
correlations ≥ 0.15, prior to detrending. On this subgroup, the
improvement of average correlation as a function of α in the
MA filter is small but consistent (Fig. 3). The maximum aver-
age correlation between coherent participants after optimal de-
trending is approximately 0.216, attained for α ≈ 0.09.

We are still in the process of investigating why part of the
participants in MALDPI behave in a manner that reduces the
correlation with other participants to almost 0. We suspected
most of the deviant participants to be nonnatives, but this ap-
pears not to be the case. We also did not observe overall longer
RTs for the nonnatives. We are currently in the process of con-
ducting an in-depth analysis of the correlations of the ’erratic’
participants with the RTs predicted by DIANA, which may un-
cover effects of specific (non)words.

Similar to the assessment of DIANA on BALDEY, we ana-
lyzed DIANA’s performance on MALDPI by comparing (in the
logRT domain) its predicted RT sequence with the sequence of
RTs averaged over all participants who scored the correspond-
ing words. Before averaging of the RTs of individual partici-
pants, detrending with the optimal value of α was performed.
The RTs simulated by DIANA depend on the setting of the pa-
rameters shown in Fig. 1. The parameter θ in the Decision com-
ponent has by far the largest effect. Its value determines the
proportion of words for which a decision is made before word
offset. This proportion appears to affect both the average logRT
predicted by DIANA and the correlation with the average RTs
of the participants.

The effect of θ on the average logRT and the correlation
with the average participants’ logRT is summarized in Fig. 4.
The horizontal axis of the plots corresponds to the proportion
of the words for which a decision is taken before word offset.
For brevity, we indicate this proportion as τ . The plot has two y-
axes. The left y-axis relates to the correlation (circles); the right
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Figure 4: This figure shows the correlation between DIANA and
the average participant (circles, left y-axis), as well as the pre-
dicted linear RT (triangles, right axis), both as function of the
proportion τ of stimuli for which the decision is taken before
stimulus offset (x-axis).

y-axis relates to the predicted linear RT (triangles). The plot
with circles shows the correlation between DIANA’s predicted
logRTs and the logRTs for the virtual average participant for the
set of 1,200 frequent words, as function of τ . The correlation
first increases to about 0.451 (for τ = 0.29) and decreases for
larger values of τ . The plot with triangles shows the predicted
linear RT in ms, averaged over all 1,200 words, as a function
of τ ; the horizontal red line is the observed average RT across
all these frequent words. In this plot, the linear RT prediction
decreases rapidly. This can be understood from the way DI-
ANA simulates the RT: if a decision is made before offset, the
RT will be equal to the decision moment. The number of com-
peting candidates at word offset is zero, so that the value of H
in choiceRT is 0. If no decision is taken before word offset,
the RT predicted by DIANA is the duration of the word plus the
choiceRT, which is now positive because H > 0. The right-
hand side of the plot shows the unrealistic limit case in which
DIANA is aggressively taking decisions before stimulus offset,
yielding a very poor match with the linear RT prediction (right
y-axis) and a poor correlation with the average participant in
the logRT domain (left y-axis). The best regime for DIANA is a
mild decision regime, in which decisions before offset are only
made for a minority of the stimuli. The same mild regime was
found optimal on BALDEY. However, the found optimal corre-
lation (0.451) between DIANA and the ’average participant’ on
MALDPI is low compared to the correlation between DIANA
and the average participant on BALDEY (> 0.61).

The fact that the curve of the correlation and the curve of
the predicted average RT approximate the average RT of the
participants for the same value of τ might suggest that the value
of θ that corresponds to this value of τ is some kind of absolute
optimum. This is the more so because for the Dutch BALDEY
set the maximum correlation between DIANA and the average
RTs of the participants was obtained for the value of θ for which
a decision was taken before word offset for 25% of the words.
However, comparing absolute values of the parameters between

BALDEY and MALDPI can be misleading, if only because the
nonwords in BALDEY were constructed in a different manner
than in MALDPI. Also, it must be realized that the eventual RT
predicted by DIANA depends on the delay in de Execution com-
ponent. The average predicted RT curve in Fig. 4 was obtained
with an execution delay of 100 ms. Different values would shift
the triangle curve upward or downward, thereby changing the
average predicted RT and shifting the value of τ for which this
curve crosses the horizontal red line to the left of right.

The fast decrease of the correlation and the average RT of
DIANA for higher values of τ suggests that the way in which the
choiceRT is computed must be improved. Hick’s Law, on which
the choiceRT contribution in DIANA’s RT prediction is based,
only provides an approximate account of the decision processes
that take place after stimulus offset. Quite likely, participant-
dependent delays in terms of differential psychology [7] play a
role, which may explain part of the seemingly ’erratic’ behavior
discussed above.

6. Conclusions and future work
DIANA, originally implemented for Dutch, has successfully
been extended to North American English, using only resources
that are freely available. This strongly suggests that the theory
underlying DIANA will also hold for other languages. Future
research must show if similar performance can be obtained for
non-IndoEuropean languages. The processing of raw RT se-
quences in the form of removing local speed effects to increase
the correlation between participants, is useful for spotting and
quantifying idiosyncrasies in RT data.

The test of DIANA on the MALDPI data has shown that the
present version of the model is a powerful predictor of the aver-
age RTs of part of the participants. Another part of the partic-
ipants shows almost zero correlations with the ’homogeneous’
group, and with DIANA. This raises questions with respect to
the design of MALDPI, and the theory implemented in DIANA,
both relating to the possibility that different participants use
very different strategies and decision criteria in a speeded au-
ditory lexical decision task. Decisions strategies will surely de-
pend on the way in which pseudo-words are constructed. Early
violations will induce a different strategy than late violations.
DIANA does not have such a ’strategic reasoning’ component.
Also, the threshold θ in the decision component is only based
on the best runner-up. Quite possibly, the threshold in human
participants also depends on the number of runners-up that are
close to the leader, similar to the use of Hick’s Law [16] for
computing the choice RT if no decision can be made before
word offset. We have already pointed out that Hick’s law does
not account for differences between participants. We will inves-
tigate whether implementation of the results of recent research
on decision making such as [24, 25, 14, 15, 16, 26] will improve
the correlation between DIANA and individual participants. Ad-
ditionally, we will extend DIANA by taking into account find-
ings about lexical access (e.g. [37]), phonetic details (e.g. [38]),
and word representations (e.g. [39], [40]).
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