Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

An NMR Study of Biomimetic Fluorapatite - Gelatine Mesocrystals

MPG-Autoren
/persons/resource/persons126855

Simon,  Paul
Paul Simon, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126820

Rosseeva,  Elena
Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126554

Buder,  Jana
Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126692

Kniep,  Rüdiger
Rüdiger Kniep, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Vyalikh, A., Simon, P., Rosseeva, E., Buder, J., Scheler, U., & Kniep, R. (2015). An NMR Study of Biomimetic Fluorapatite - Gelatine Mesocrystals. Scientific Reports, 5: 15797, pp. 1-10. doi:10.1038/srep15797.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-0924-7
Zusammenfassung
The mesocrystal system fluoroapatite-gelatine grown by double-diffusion is characterized by hierarchical composite structure on a mesoscale. In the present work we apply solid state NMR to characterize its structure on the molecular level and provide a link between the structural organisation on the mesoscale and atomistic computer simulations. Thus, we find that the individual nanocrystals are composed of crystalline fluorapatite domains covered by a thin boundary apatite-like layer. The latter is in contact with an amorphous layer, which fills the interparticle space. The amorphous layer is comprised of the organic matrix impregnated by isolated phosphate groups, Ca3F motifs and water molecules. Our NMR data provide clear evidence for the existence of precursor complexes in the gelatine phase, which were not involved in the formation of apatite crystals, proving hence theoretical predictions on the structural pre-treatment of gelatine by ion impregnation. The interfacial interactions, which may be described as the glue holding the composite materials together, comprise hydrogen bond interactions with the apatite PO43- groups. The reported results are in a good agreement with molecular dynamics simulations, which address the mechanisms of a growth control by collagen fibers, and with experimental observations of an amorphous cover layer in biominerals.