Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Formation of Ruthenium Carbenes by gem-Hydrogen Transfer to Internal Alkynes: Implications for Alkyne trans-Hydrogenation

MPG-Autoren
/persons/resource/persons132873

Leutzsch,  Markus
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons138473

Wolf,  Larry M.
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons185471

Gupta,  Puneet
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons145352

Fuchs,  Michael
Research Department Fürstner, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons59045

Thiel,  Walter
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58537

Farès,  Christophe
Service Department Farès (NMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58380

Fürstner,  Alois
Research Department Fürstner, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)

[342]SI.pdf
(Ergänzendes Material), 5MB

Zitation

Leutzsch, M., Wolf, L. M., Gupta, P., Fuchs, M., Thiel, W., Farès, C., et al. (2015). Formation of Ruthenium Carbenes by gem-Hydrogen Transfer to Internal Alkynes: Implications for Alkyne trans-Hydrogenation. Angewandte Chemie International Edition, 54(42), 12431-12436. doi:10.1002/anie.201506075.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0028-DB51-6
Zusammenfassung
Insights into the mechanism of the unusual trans-hydrogenation of internal alkynes catalyzed by {Cp*Ru} complexes were gained by para-hydrogen (p-H2) induced polarization (PHIP) transfer NMR spectroscopy. It was found that the productive trans-reduction competes with a pathway in which both H atoms of H2 are delivered to a single alkyne C atom of the substrate while the second alkyne C atom is converted into a metal carbene. This “geminal hydrogenation” mode seems unprecedented; it was independently confirmed by the isolation and structural characterization of a ruthenium carbene complex stabilized by secondary inter-ligand interactions. A detailed DFT study shows that the trans alkene and the carbene complex originate from a common metallacyclopropene intermediate. Furthermore, the computational analysis and the PHIP NMR data concur in that the metal carbene is the major gateway to olefin isomerization and over-reduction, which frequently interfere with regular alkyne trans-hydrogenation.