English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Structure and mechanism of the Rubisco-assembly chaperone Raf1

MPS-Authors
/persons/resource/persons78077

Hauser,  Thomas
Hayer-Hartl, Manajit / Chaperonin-assisted Protein Folding, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons185379

Bhat,  Javaid Y.
Hartl, Franz-Ulrich / Cellular Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons134752

Milicic,  Goran
Hartl, Franz-Ulrich / Cellular Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78072

Hartl,  F. Ulrich
Hartl, Franz-Ulrich / Cellular Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons77798

Bracher,  Andreas
Hartl, Franz-Ulrich / Cellular Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78078

Hayer-Hartl,  Manajit
Hayer-Hartl, Manajit / Chaperonin-assisted Protein Folding, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hauser, T., Bhat, J. Y., Milicic, G., Wendler, P., Hartl, F. U., Bracher, A., et al. (2015). Structure and mechanism of the Rubisco-assembly chaperone Raf1. NATURE STRUCTURAL & MOLECULAR BIOLOGY, 22(9), 720-728. doi:10.1038/nsmb.3062.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0028-953F-F
Abstract
Biogenesis of the photosynthetic enzyme Rubisco, a complex of eight large (RbcL) and eight small (RbcS) subunits, requires assembly chaperones. Here we analyzed the role of Rubisco accumulation factor1 (Raf1), a dimer of similar to 40-kDa subunits. We find that Raf1 from Synechococcus elongatus acts downstream of chaperonin-assisted RbcL folding by stabilizing RbcL antiparallel dimers for assembly into RbcL(8) complexes with four Raf1 dimers bound. Raf1 displacement by RbcS results in holoenzyme formation. Crystal structures show that Raf1 from Arabidopsis thaliana consists of a beta-sheet dimerization domain and a flexibly linked alpha-helical domain. Chemical cross-linking and EM reconstruction indicate that the beta-domains bind along the equator of each RbcL(2) unit, and the alpha-helical domains embrace the top and bottom edges of RbcL(2). Raf1 fulfills a role similar to that of the assembly chaperone RbcX, thus suggesting that functionally redundant factors ensure efficient Rubisco biogenesis.