English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Effect of spatial sampling from European flux towers for estimating carbon and water fluxes with artificial neural networks

MPS-Authors
/persons/resource/persons62352

Carvalhais,  Nuno
Model-Data Integration, Dr. Nuno Carvalhais, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62425

Jung,  Martin
Global Diagnostic Modelling, Dr. Martin Jung, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62472

Mahecha,  Miguel D.
Empirical Inference of the Earth System, Dr. Miguel D. Mahecha, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62524

Reichstein,  Markus
Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

BGC2314P.pdf
(Postprint), 721KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Papale, D., Black, T. A., Carvalhais, N., Cescatti, A., Chen, J., Jung, M., et al. (2015). Effect of spatial sampling from European flux towers for estimating carbon and water fluxes with artificial neural networks. Journal of Geophysical Research: Biogeosciences, 120(10), 1941-1957. doi:10.1002/2015JG002997.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0028-5E09-9
Abstract
Empirical modelling approaches are frequently used to upscale local eddy-covariance observations of carbon, water and energy fluxes to regional and global scales. The predictive capacity of such models largely depends on the data used for parameterization and identification of input-output relationships, while prediction for conditions outside the training domain is generally uncertain. In this work, artificial neural networks (ANNs) were used for the prediction of gross primary production (GPP) and latent heat flux (LE) on local and European scales with the aim to assess the portion of uncertainties in extrapolation due to sample selection. ANNs were found to be a useful tool for GPP and LE prediction, in particular for extrapolation in time (mean absolute error MAE for GPP between 0.53 and 1.56 gC m-2 day-1). Extrapolation in space in similar climatic and vegetation conditions also gave good results (GPP MAE 0.7-1.41 gC m-2 day-1), while extrapolation in areas with different seasonal cycles and controlling factors (e.g. the tropical regions) showed noticeably higher errors (GPP MAE 0.8-2.09 gC m-2 day-1). The distribution and the number of sites used for ANN training had a remarkable effect on prediction uncertainty in both, regional GPP and LE budgets and their interannual variability. Results obtained show that for ANN upscaling for continents with relatively small networks of sites, the error due to the sampling can be large and needs to be considered and quantified. The analysis of the spatial variability of the uncertainty helped to identify the meteorological drivers driving the uncertainty.