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Magnetic fingerprint of individual Fe4 molecular
magnets under compression by a scanning
tunnelling microscope
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Single-molecule magnets (SMMs) present a promising avenue to develop spintronic tech-

nologies. Addressing individual molecules with electrical leads in SMM-based spintronic

devices remains a ubiquitous challenge: interactions with metallic electrodes can drastically

modify the SMM’s properties by charge transfer or through changes in the molecular

structure. Here, we probe electrical transport through individual Fe4 SMMs using a scanning

tunnelling microscope at 0.5 K. Correlation of topographic and spectroscopic information

permits identification of the spin excitation fingerprint of intact Fe4 molecules. Building from

this, we find that the exchange coupling strength within the molecule’s magnetic core is

significantly enhanced. First-principles calculations support the conclusion that this is the

result of confinement of the molecule in the two-contact junction formed by the microscope

tip and the sample surface.
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M
olecular spintronics harnesses magnetic properties of
molecules to achieve enhanced functionality in electro-
nic circuits1. The use of single-molecule magnets

(SMMs) with long spin-relaxation times may even enable spin-
based quantum computing2,3. Practical incorporation of an SMM
into a two-contact device demands strong coupling to the spin
subsystem without disrupting the magnetic properties with
unwanted electronic or structural modifications4–8. Metal-
molecule-metal junctions constructed by electro-migration have
demonstrated the coupling between electric current and
molecular magnetic moments, as well as the persistence of
magnetic anisotropy within the device junction for
[Mn12O12(O2CR)16(H2O)4] (Mn12), [Fe4(L0)2(dpm)6] and TbPc2

SMMs9–12. Indirect electronic contact to TbPc2 using carbon-
nanotube and graphene-based devices showed signs of slow
magnetization dynamics13,14. However, on metallic surfaces the
magnetic bistability of TbPc2 is quenched4–6 and recovers only
for significant separation of molecule and surface7. Mn12 proved
to be exceedingly fragile8 unless the molecules are isolated by a
protective layer15. In contrast, our focus here is directed to the
four exchange coupled Fe atoms of the tetrairon(III) (Fe4) system
which are encased in a robust, rigid, three-dimensional (3D)
organic ligand shell. Fe4 allows significant flexibility in
customization of ligands16 and stable magnetism has been
detected in ensembles of both chemically grafted17,18 and
sublimated19,20 Fe4 derivatives on metallic surfaces.

Here, we use a low-temperature scanning tunnelling micro-
scope (STM) to study the magnetic properties of Fe4 molecules
sublimated onto the surface of a Cu2N/Cu(100) substrate. The
STM tip is used to address individual Fe4 molecules and probe
excitations of the Fe4 SMM’s electron spin by inelastic electron
tunnelling spectroscopy (IETS)21. Hindering this is the 3D nature
of the molecule and its ligand shell. In particular, tip interaction
during spectroscopic measurements is extremely strong,
commonly leading to molecular fragmentation. We overcome
this problem by implementing analysis that correlates
independent metrics (topography and IETS spectrum) to

categorize the magnetic fragments on the surface and identify
intact molecules. Analysis of the spectrum identified for intact Fe4

molecules shows that the exchange energy within the magnetic
core of the molecule is boosted by a significant margin. From
first-principles calculations, we find that the enhanced exchange
interaction between the Fe ions can be explained by a small
compression of the magnetic core. We attribute this compression
to the confinement of the molecule in the two-contact junction
formed by the STM tip and the substrate surface.

Results
Fe4 evaporated on Cu2N. The Fe4 derivative used in this work
([Fe4(L)2(dpm)6], where H3L is the tripodal ligand Ph-
C(CH2OH)3 and Hdpm is dipivaloylmethane; Fig. 1a) permits
thermal sublimation of isolated molecules onto a semi-insulating
copper nitride (Cu2N) surface on Cu (100) that has been pre-
cooled (see Methods for details)19,20.

After deposition onto the Cu2N surface, and immediate cooling
below 1 K, constant-current topographs reveal molecular objects
with a wide variety of morphologies (Fig. 1b). Density functional
theory (DFT) computations (see Methods for details) of Fe4

relaxed on a Cu2N slab indicate that molecules adsorb with the
axis of approximate 3-fold rotational symmetry (pseudo-C3 axis)
canted at a 33� angle from the surface normal, and with a total
height of 1.7 nm (Fig. 1a,c). The tallest objects on the surface
appear as spheroids of width 2 nm and height between 700 and
800 pm in STM scans (Fig. 1d). Unambiguously identifying these
objects as intact Fe4 SMMs is not possible by topographic
measurements alone because the fine, multi-lobed structure is
strongly tip-dependent.

Spectroscopic measurements. To corroborate the coarse topo-
graphic match we record inelastic electron tunnelling spectra with
the tip brought into contact with the molecules. The differential
conductance, dI/dV, is measured as a function of bias voltage, V,
starting at reduced bias voltage (10 mV) and increased tunnel
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Figure 1 | Fe4 molecule adsorbed on the Cu2N surface. (a) [Fe4(L)2(dpm)6] resting on the Cu2N surface. Adsorption geometry and molecular structure

are computed by density function theory (DFT). The molecule’s axis defined by the tripodal ligands is at a 33� angle from the surface normal. Atoms are Fe

(orange), O (red), C (grey), H (white), Cu (brown) and N (blue). (b) Overview scanning tunnelling microscope (STM) image of the Cu2N surface after

deposition of molecules (scale bar, 8 nm). A number of Fe4 molecules are visible as the tallest objects in orange. This image was filtered to remove noise

using WSxM software23. (c) Calculated top view image of relaxed Fe4 on Cu2N showing the spatial distribution of the density of states integrated between

0 and þ 3 eV in energy. (d) STM image of an Fe4 molecule. It appears as a spheroid of B2 nm diameter with a multi-lobed substructure consistent with the

calculated image in (c). The colour scale indicates the topographical height ranging between 0 and 1 nm in (b,d), which were acquired at a tunnel current

set-point of 3 pA and bias voltage of 2.3 V. The 1-nm lateral scale bar inset in (c) also applies to (d).
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current (5–100 pA; see Methods). Over a molecule at typical
scanning conditions (2 V, 3 pA), we estimate the tip-Cu2N gap to
be 1.5±0.1 nm (see Supplementary Fig. 1 and Supplementary
Note 1); this matches well with the expected molecule height.
Under scanning conditions transient physical tip-molecule
interactions occur, confirming that the tip comes into contact
with the top of the molecule. Transitioning to spectroscopy
conditions moves the tip towards the molecule by 700–800 pm
(see Supplementary Fig. 1). Hence, current passes directly
through the molecule, as it is sandwiched into a two-contact
device formed by the STM junction. Figure 2a shows a repre-
sentative spectrum acquired on one of the molecules so trapped.
It features clear steps in dI/dV(V) at ±0.5 mV and at ±7.5 mV
that stem from excitations of the molecule’s electron spin. We
verify the magnetic nature of these excitations by acquiring data
on individual molecules at both zero field and under an out-of-
plane 9 T field, Fig. 2b. Both excitations shift in energy with
magnetic field, qualitatively consistent with Zeeman energies
expected for electron spins in a 9 T magnetic field.

Different molecules, however, exhibit a large variation of the spin
excitation energies. It is not, a priori, clear if these variations might
stem from measurements on partially fragmented molecules or
interaction with the electrodes. This uncertainty can be overcome
by correlating topographic height with observed spin excitations
over a statistically significant population of molecules (460).

Figure 3a shows a 2D histogram of the spin excitation steps
detected at zero magnetic field, binned by excitation voltage and
topographical height of each molecule, measured following the
spectroscopic measurement. Since, spin excitations are symmetric
in energy, we plot symmetrized data (for comparison see
nonsymmetrized data in Supplementary Fig. 2). Clear groupings
of excitations appear correlated with height. In particular a distinct
set of peaks is visible for molecules taller than 700 pm (Fig. 3b),
corresponding to two spin excitations with characteristic energy
DE1¼ 0.47 meV and DE2¼ 7.2 meV, and distribution standard
deviations of 0.14 and 0.7 meV, respectively. The breadths of the
observed distributions are larger than the experimental error on
excitation energies (0.1 meV), therefore they represent variation in
the expression of the molecule in the junction. This emergent
spectrum is linked to molecules that feature a coarse topographical
match with the computed DFT structure, thus revealing the spin
excitation fingerprint of Fe4 on Cu2N.

Among shorter molecules measured in Fig. 3a, the peaks are
more scattered, supporting the hypothesis that these are disrupted
or fragmented molecules. The exact chemical configuration of the
fragments remains unknown but the most commonly observed
spectra qualitatively match those expected for clusters comprising
two and three Fe atoms with coupling parameters similar to intact
molecules (see Supplementary Fig. 3 and Supplementary Note 2).
The potentially insidious role magnetic fragments may play in the
interpretation of experiments on bulky, fragile molecules can thus
be mitigated by identifying intact molecules via correlation of
independent metrics, such as spectral information and topo-
graphic height.

Modelling of spin excitations. Magnetic properties of Fe4 are
quantitatively investigated by fitting the spin excitation energies
extracted from Fig. 3b to an effective spin Hamiltonian that
incorporates the dominant exchange coupling between the central
Fe ion and the side ions and net second-order uniaxial anisotropy
(equation 1). Less influential contributions from next-nearest
neighbour exchange, rhombic anisotropy and higher-order ani-
sotropies are neglected. The energy eigenstates of the simplified
Hamiltonian deviate by less than the measurement accuracy from
a more complex spin Hamiltonian reported previously16

(see Supplementary Note 3 and Supplementary Fig. 4).

bH ¼ X
i¼1;2;3

JbSi � bScþ gmB
bB � bSTþDbS2

T;z ð1Þ

bSi and bSc denote the spin vector operators for the three side
ions and for the central ion respectively, where each ion has a
spin 5/2. The total spin operator of the molecule, bST, is given by
bST ¼ bScþ

P
i¼1;2;3

bSi and bST;z is its component along the easy
magnetic axis (z). Antiferromagnetic Heisenberg exchange
coupling, J40 (Fig. 3c inset), is mediated by the oxygen bridges
that connect the central and side ions and leads to a ferrimagnetic
configuration and a ST¼ 5 ground state. The next higher energy
multiplet features ST¼ 4; other multiplets lie at still higher energies.
Uniaxial anisotropy, D, parallel to the tripodal ligands, splits spin
states in each multiplet into a parabolic distribution typical of easy-
axis (Do0) molecular magnets (Fig. 3c). A simplifying assumption
that each multiplet shares the same D value is made (see
Supplementary Note 3). Zeeman energy is included for spectra
recorded at 9 T field; g is the Landé g factor and mB is the Bohr
magneton. The out-of-plane magnetic field, B, is tilted by 33� from
z to account for the orientation of the molecule on Cu2N.

Spin excitations with tunnelling electrons obey the selection
rule Dm¼ {þ 1, 0, � 1} (‘Dm is the change in the expectation
value, ‘m, of the bST;z operator)22. At 0.5 K, only the ground
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Figure 2 | Conductance spectra of individual molecules. (a) dI/dV(V)

spectrum recorded on a molecule with 700 pm topographic height at 0 T

magnetic field (blue line, initial current Io¼ 75 pA at Vo¼ 10 mV).

A background (BG) spectrum recorded with the same tip on bare Cu2N

is shown in grey. (b) Spectra acquired on a single molecule (800 pm height)

without magnetic field (blue line, Io¼ 25 pA, Vo¼ 10 mV) and under a 9 T

out-of-plane field (green line, Io¼ 50 pA, Vo¼ 15 mV), background spectrum

(BG, grey line). When a magnetic field is applied, the low-energy excitation

widens from 0.2±0.2 to 0.8±0.1 mV and the high-energy excitation widens

from 7.5±0.1 to 8.5±0.1 mV. Background spectra in (a) and (b) are offset

for clarity. Red lines in (a) and (b) indicate spectra computed using the

spin Hamiltonian model. The fits yield exchange coupling, J¼ 2.93 meV

(23.6 cm� 1), and magnetic anisotropy, D¼ � 52meV (�0.42 cm� 1) for

the molecule in (a) and J¼ 2.89 meV (23.3 cm� 1), D¼ � 26meV

(�0.21 cm� 1) with a g factor of 2 for the molecule in (b).
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doublet with m¼±5 is occupied. Therefore, the two
characteristic excitations found for Fe4 can be linked to specific
spin transitions: DE1 is a low-energy transition within the ST¼ 5
spin multiplet from m¼±5 to ±4, and DE2 is a transition to the
lowest-lying states of the ST¼ 4 multiplet. Fitting DE1 and DE2 to
the above spin Hamiltonian yields a uniaxial anisotropy energy of
D¼ � 60±26meV (� 0.48±0.21 cm� 1) and exchange coupling
energy of J¼ 2.8±0.3 meV (23±2 cm� 1). We note that the
standard deviations given here reflect the variation in D and J
among the ensemble of molecules.

Discussion
The J value observed for molecules sandwiched in the two-contact
junction of the STM is significantly higher than for bulk samples
of Fe4 molecules, where J¼ 1.92 meV (15.5 cm� 1)16 for the spin
Hamiltonian in equation 1 (see Supplementary Note 3).
A scenario with lower J leading to the observed steps in dI/dV
would require DE2 to be an excitation into higher-lying multiplets
such as ST¼ 6 but this can be ruled out by the observed magnetic-
field-dependent energy shift of DE2 (see Supplementary Note 4).
Similarly, a change in the magnetic properties of the molecule due
to a change in the molecule’s redox state as predicted for other
types of molecules24 is unlikely. Changing the redox state would
require accessing either the highest occupied or lowest
unoccupied molecular orbitals of the Fe4 ligand shell. These are
separated from the Fermi energy by several electronvolts and are
not accessible during the IETS measurements performed here.
Consequently, there must be some other mechanism that
enhances exchange within the molecule.

We explore the influence of the Cu2N surface on the magnetic
properties of the molecule via DFT calculations. Starting with the
relaxed geometry computed for Fe4 on Cu2N, the magnetic
properties may be computed using the broken symmetry
approach25 (see Methods for details on DFT calculations).
The structural relaxation of the molecule is found to reduce
the exchange to 1.50 meV (12.1 cm� 1), B20% below the
experimental value for bulk molecular crystals. Inclusion of the
electronic effects of the substrate further reduces the exchange to
1.17 meV (9.4 cm� 1). The most important information gained
here is that the structural changes induced by the surface and the
interaction of the substrate electron bath both feature the same
qualitative trend. Hence, the influence of the substrate is not
responsible for the boosted exchange.

We reason that the increase in J must be induced by the
confinement of the molecule in the narrow STM junction.
Hydrostatic compression has been found to alter the inter-
molecular exchange in bulk crystals of organic ferromagnets26. In
Fe4, exchange coupling between the central and side ions is
predominantly mediated by the oxygen atoms of the tripodal
ligands. A distortion of these ligands relative to the plane of the Fe
ions provides a direct path to change the Fe-O-Fe angles16 and,
consequently, the exchange coupling strength, J. We therefore
consider the effect of distorting this ligand during compression of
the molecule. We incorporate a rudimentary representation of
this distortion into the DFT framework. Starting with the
structure of the molecule, as relaxed on Cu2N, the upper
tripodal ligand is shifted downwards, parallel to the axis of
the molecule by 10 pm (Fig. 4). This is equivalent to compressing
the molecular core by 2% of its starting breadth. Re-evaluating the
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Figure 3 | Spin excitation fingerprint of Fe4 on Cu2N. (a) Two-dimensional histogram for an ensemble of molecules (460) correlating zero-field spin

excitation energies of a molecule with its topographic height. The histogram counts the number of inelastic tunnelling steps observed in dI/dV(V) binned

by step voltage and topographic height of the molecule measured after completion of each spectrum. For molecules over 700 pm in height, a dominant

spectrum can be identified. For shorter objects large variation indicates significant changes in magnetic structure and possible fragmentation. Bin sizes are

0.75 mV and 50 pm. The colour scale indicates bin count between 1 and 11. Since spin excitations are symmetric with respect to 0 V, the absolute value of

the steps is used, and the symmetrized plot is shown. (b) Histogram of all steps measured on molecules 4700 pm in height. Focusing on those molecules

reveals the characteristic spectrum for intact Fe4 molecules, which features two spin excitations: a low-energy excitation at 0.47 mV and a high-energy

excitation at 7.2 mV. Both have broad distributions with standard deviations of 0.14 and 0.7 mV, respectively reflecting variations in spin excitation energies

for different molecules. (c) Spin state distribution for Fe4 single-molecule magnets. States are calculated using a model of the magnetic core (inset)

incorporating antiferromagnetic exchange coupling of the three outer Fe ions to the central ion (orange balls) with strength J (blue bonds) and easy-axis

magnetic anisotropy with strength D applied to the whole molecule (teal arrow). The characteristic excitations found in (b) are consistent with the two

lowest energy transitions excitable by inelastic electron tunnelling (curved teal and blue arrows) with J between 2.5 meV (20 cm� 1) and 3.1 meV

(25 cm� 1), and D between � 34meV (�0.28 cm� 1) and �86meV (�0.70 cm� 1).
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exchange coupling and comparing to the value computed for the
undistorted molecule isolated from the surface, we find that this
minimal structural change increases J by a factor of 1.9, to a value
of 2.82 meV (22.7 cm� 1). The magnitude of the increase is
sufficient to explain the boosted exchange interaction found for
Fe4 in the STM junction.

In the experiment, the complexity of the situation is
considerably greater. Along with other environmental effects
there must be more complex distortions occurring. This is
corroborated by the large variation of D and J observed for the
ensemble of molecules (Fig. 3b). The 1s standard deviation of
DE2 relates to a variation in J of 10% (±0.3 meV). We therefore
consider a range of other possible distortions (see Supplementary
Fig. 5 and Supplementary Note 5) and find that rotating the
tripodal ligand relative to the Fe ions and tilting of the protruding
phenyl rings also affects J, albeit significantly less than the simple
2% compression (see Supplementary Tables 1 and 2). Other
random contributions to the broad distribution of excitation
energies are possible. No selection was made for differing
positions on the Cu2N surface and it was not possible to inspect
the surface beneath the molecules for the presence of defects, such
as nitrogen vacancies. Consequently, a portion of the random
variation may arise from local differences in substrate coupling,
although this will be mitigated by the molecule’s protective ligand

shell. We additionally expect that the broad distribution found for
DE1 reflects the influence of structural distortions on the
molecular anisotropy. However, in contrast to the effect on
exchange energy, no systematic shift was found experimentally.

Despite the broad distribution of parameters, individual Fe4

SMMs retain their qualitative magnetic character when incorpo-
rated into a prototypical two-contact device formed by an STM
tunnel junction. Ascertaining this is made possible by performing
an exhaustive survey of molecular objects. Correlation of spin
excitation spectra with topographic height is a critical step in the
study of bulky, polynuclear SMMs. By using this approach, we
find that Fe4 molecules in the STM junction feature increased
exchange coupling strength that can be accounted for by tip-
induced structural distortions. While demonstrating that Fe4 may
be incorporated into a prototypical device, this work also
addresses key challenges in combining electronic transport
devices with SMMs. Not only can the molecule’s bulky ligand
shell aid in the preservation the molecule’s magnetic properties,
but it can also participate in strong mechanical interactions with
the electrodes. Confronting and overcoming these challenges
facilitate the rational design of SMMs and creates the opportunity
for identification of novel effects, such as the possibility of tuning
intra-molecular properties by mechanical motion.

Methods
Experiment. Observations were made with an ultrahigh-vacuum low-temperature
STM (Unisoku USM1300) equipped with a 3He cryostat operated at 0.5 K,
and with a magnetic field of up to 9 T applied perpendicular to the sample
surface. The copper crystal was cleaned using cycles of Ar sputtering (1 kV,
pressure¼ 5� 10� 6 mbar) and annealing (T¼ 870 K) using an electron-beam
heater built into the sample holder. The final annealing cycle used a lower tem-
perature of 770 K. The copper nitride monolayer was formed by three minutes of
nitrogen sputtering (1 kV, pressure¼ 5� 10� 6 mbar) followed by annealing for
8 min at 640 K. Platinum iridium (90:10) tips were used to perform all STM
measurements. Tips were prepared by 5 min of Ar sputter cleaning (1 kV,
pressure¼ 5� 10� 6 mbar) followed by heating using 10 s pulses of electron beam
bombardment and a gentle dipping into the Cu crystal.

Fe4 molecules, synthesized and isolated in crystalline form16, were mechanically
ground into a powder and sublimated from a home-built quartz Knudsen cell
maintained at a constant temperature of 483 K. Deposition times ranged between
10 and 30 s. The Cu2N/Cu substrate was pre-cooled to 4 K in the STM cryostat,
then moved rapidly to the deposition chamber and back to the cryostat; during this
procedure the sample temperature reached an estimated maximum of 100 K.

Acquisition of spin excitation spectra. Inelastic electron tunnelling spectra were
acquired by positioning the tip over candidate molecules at typical scanning
conditions (3 pA, 2.0–2.5 V). Subsequently, the bias voltage was reduced slowly to
10–15 mV, then the tunnel current set-point was increased to 5–100 pA. Following
this procedure, the feedback loop was disengaged, and the sample bias voltage was
swept. A small modulation voltage (100–300 mV) at 691 Hz was added to permit
direct lock-in detection of differential conductance, dI/dV(V).

Calculated spin excitation spectra. The conductance spectra were calculated
from the eigenstates and eigenenergies of the effective spin Hamiltonian
(equation 1) using a perturbative treatment of inelastic electron-spin scattering 27.
In this approach, a spin excitation between state |2i and |1i with DE energy appears
as steps in dI/dV(V) at þDE/e and –DE/e voltage. The height of the conductance
steps is proportional to the transition matrix element

P
j j 1h jbr � bSj 2j ij2, where br

is the spin vector operator of the tunnelling electron and bSj are the spin vector
operators of the Fe atoms in the Fe4 molecule. The distribution of scattering
strength between the four Fe atoms influences the relative height of the spin
excitations steps. For simplicity, we assumed that scattering occurs with equal
probability at any of the side atoms. Other ratios are possible but do not influence
the voltage position of the conductance steps.

The calculated conductance spectra were used to fit experimental data by
iterative computation of the spectrum while changing the exchange (J) and
anisotropy (D) parameters in the spin Hamiltonian describing the Fe4 molecule
(equation 1). Broadening of the conductance steps by finite temperature and bias
modulation was taken into account. This led to step width of 400–600 mV. A linear
slope was added to the conductance spectra following the fitting. Calculations that
account for the out-of-plane magnetic field used a 9 T magnetic field applied at 33�
from the molecular easy axis.

a

b c

Figure 4 | Structural distortions of Fe4 in the STM tunnel junction. The

strong contact made by the tip induces distortions as the molecule is

compressed in the STM junction and enhances super-exchange.

(a) Schematic of the magnetic core of the Fe4 molecule. Key to the super-

exchange coupling within the magnetic core are the Fe-O-Fe bond angles.

The blue diamonds represent the planes of these bonds; oxygen atoms are

red and iron atoms are orange. Compression of the molecule by the STM tip

displaces the O atoms relative to the Fe atoms causing a tilt of the Fe2O2

bond planes and a change in the Fe-O-Fe bond angle. The distorted

configuration is shown superimposed, semi-transparent with dashed lines.

(b) Schematic depicting the small distortion applied for DFT calculation of

exchange over a Fe2O2 unit. (c) Model of the compressed molecule used in

DFT calculations. Atoms are Fe (orange), O (red), C (grey) and H (white).

To simulate the compression inside the STM junction, the upper tripodal

ligand (highlighted in green) is shifted downwards parallel to the molecule

axis by 10 pm, equivalent to a 2% reduction in breadth of the magnetic core.

This structural shift nearly doubles the computed exchange coupling.
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DFT calculations. The relaxed structure of the Fe4 molecule adsorbed on the Cu2N
surface was computed within the DFT framework with the Cp2k program pack-
age28,29 using the Dudarev simplified version30 of the DFTþU approach31,32

together with the PBEsol functional33.
The calculations followed methodology developed for SMMs on surfaces34 and

used successfully for Fe4 molecules on Au surfaces19. The dispersion correction
term (D3) was added to the energy35. The norm-conserving Goedecker-Teter-
Hutter (GTH) pseudopotentials36 were used with GTH double-z polarized
molecularly optimized basis sets for all atomic species37. The energy cutoff applied
to the plane-wave basis sets was set to 500 Ry, in agreement with other studies on
Cu2N38. The values of the parameter U, 4.1 eV on the Fe 3d and 3.0 eV on the O 2p
orbitals were chosen following other calculations involving Fe4 molecules39. The
convergence criterion for the self-consistent field method (SCF) energy was
1� 10� 6 Hartree. A threshold of 1� 10� 3 Hartree Bohr� 1 for the atomic forces
is considered sufficient for a reliable optimization. Optimization runs used a
0.17 eV smearing of the occupational numbers around the Fermi level to account
for the metallicity of the surface, and to ease the convergence. For calculation of
magnetic parameters, using the optimized geometry as a starting point, a U
parameter may be added to the 3d states of the Cu atoms to ascertain the impact of
the substrate on magnetic interactions within the Fe4 cluster.

The cluster and surface were relaxed separately before optimizing the adsorbed
structure. The Cu2N surface slab consisted of 8� 8� 2 copper unit cells (width,
breadth and thickness, respectively) and a layer of nitrogen atoms, positioned as
starting geometry at 0.3 Å above the topmost copper layer in a c(2� 2) manner.
Out of the total four atomic copper layers, the bottom two were kept fixed to the
Cu bulk positions during the geometry optimization. The experimental copper
lattice constant of 3.615 Å was used40. The cluster was positioned on the relaxed
Cu2N surface, leaning on two tert-butyl groups and the phenyl ring19. It was
separated from its periodic images laterally by 13 and 14 Å, in x and y respectively,
while the vacuum region extended 38 Å above the surface.

The exchange coupling constants in Fe4 were computed through the broken
symmetry approach25,41,42 incorporating exchange interactions between nearest
and next-nearest neighbours. For comparison to the giant spin Hamiltonian used
in the main text, an equivalent nearest neighbour exchange coupling was calculated
from the computed values of both the nearest and next-nearest neighbour coupling
constants (See Supplementary Note 3 for details). The magnetic properties were
evaluated on the optimized geometry with a tighter SCF convergence criterion of
5� 10� 7 Hartree, computing the energies of the determinants |uuuui, |duuui,
|uduui ,|uudui and |uuudi (u stands for spin up (m¼ 5/2), d for spin down
(m¼ � 5/2) on the four Fe ions). The interacting topmost layers of the substrate
slab can be approximated as Cu2N, consequently, UCu¼ 5 eV43,44 was applied to all
Cu atoms as reported previously in the literature. To verify the reliability of the
computational protocol, the exchange coupling constants were also computed for
the geometry determined from X-ray measurements and compared with
experimental measurements (see Supplementary Table 1). To decouple the
geometrical effects of adsorption from the electronic contribution of the surface,
the magnetic couplings were computed for the relaxed molecule in the presence of
the Cu2N surface and with the slab removed. In the distorted molecule
compression was incorporated as a rigid shift of the upper tripodal ligand, with no
further geometric relaxation.

References
1. Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule

magnets. Nat. Mater. 7, 179–186 (2008).
2. Ardavan, A. et al. Will spin-relaxation times in molecular magnets permit

quantum information processing? Phys. Rev. Lett. 98, 057201 (2007).
3. Thiele, S. et al. Electrically driven nuclear spin resonance in single-molecule

magnets. Science 344, 1135–1138 (2014).
4. Stepanow, S. et al. Spin and orbital magnetic moment anisotropies of

monodispersed bis(phthalocyaninato)terbium on a copper surface. J. Am.
Chem. Soc. 132, 11900–11901 (2010).

5. Margheriti, L. et al. X-ray detected magnetic hysteresis of thermally evaporated
terbium double-decker oriented films. Adv. Mater. 22, 5488–5493 (2010).

6. Malavolti, L. et al. Erratic magnetic hysteresis of TbPc2 molecular
nanomagnets. J. Mater. Chem. C 1, 2935–2942 (2013).

7. Hofmann, A. et al. Depth-dependent spin dynamics in thin films of TbPc2

nanomagnets explored by low-energy implanted muons. ACS Nano 6,
8390–8396 (2012).

8. Mannini, M. et al. XAS and XMCD investigation of Mn12 monolayers on gold.
Chem. Eur. J. 14, 7530–7535 (2008).

9. Heersche, H. B. et al. Electron transport through single Mn12 molecular
magnets. Phys. Rev. Lett. 96, 206801 (2006).

10. Jo, M.-H. et al. Signatures of molecular magnetism in single-molecule transport
spectroscopy. Nano Lett. 6, 2014–2020 (2006).

11. Burzurı́, E., Zyazin, A. S., Cornia, A. & van der Zant, H. S. J. Direct observation
of magnetic anisotropy in an individual Fe4 single-molecule magnet. Phys. Rev.
Lett. 109, 147203 (2012).

12. Zyazin, A. S. et al. Electric field controlled magnetic anisotropy in a single
molecule. Nano Lett. 10, 3307–3311 (2010).

13. Ganzhorn, M., Klyatskaya, S., Ruben, M. & Wernsdorfer, W. Strong spin-
phonon coupling between a single-molecule magnet and a carbon nanotube
nanoelectromechanical system. Nat. Nanotechnol. 8, 165–169 (2013).

14. Candini, A., Klyatskaya, S., Ruben, M., Wernsdorfer, W. & Affronte, M.
Graphene spintronic devices with molecular nanomagnets. Nano Lett. 11,
2634–2639 (2011).

15. Kahle, S. et al. The quantum magnetism of individual manganese-12-acetate
molecular magnets anchored at surfaces. Nano Lett. 12, 518–521
(2012).

16. Accorsi, S. et al. Tuning anisotropy barriers in a family of tetrairon(III) single-
molecule magnets with an S¼ 5 ground state. J. Am. Chem. Soc. 128,
4742–4755 (2006).

17. Mannini, M. et al. Magnetic memory of a single-molecule quantum magnet
wired to a gold surface. Nat. Mater. 8, 194–197 (2009).

18. Mannini, M. et al. Quantum tunnelling of the magnetization in a monolayer of
oriented single-molecule magnets. Nature 468, 417–421 (2010).

19. Malavolti, L. et al. Magnetic bistability in a submonolayer of sublimated Fe4

single-molecule magnets. Nano Lett. 15, 535–541 (2015).
20. Margheriti, L. et al. Thermal deposition of intact tetrairon(III) single-molecule

magnets in high-vacuum conditions. Small 5, 1460–1466 (2009).
21. Heinrich, A. J., Gupta, J. A., Lutz, C. P. & Eigler, D. M. Single-atom spin-flip

spectroscopy. Science 306, 466–469 (2004).
22. Loth, S. et al. Controlling the state of quantum spins with electric currents.

Nat. Phys. 6, 340–344 (2010).
23. Horcas, I. et al. WSXM: a software for scanning probe microscopy and a tool

for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).
24. Lehmann, J., Gaita-Ariño, A., Coronado, E. & Loss, D. Spin qubits with

electrically gated polyoxometalate molecules. Nat. Nanotechnol. 2, 312–317
(2007).

25. Noodleman, L. & Norman, J. G. J. The Xa valence bond theory of weak
electronic coupling. Application to the low-lying states of Mo2Cl84� . J. Chem.
Phys. 70, 4903–4906 (1979).

26. Thirunavukkuarasu, K. et al. Pressure dependence of the exchange anisotropy
in an organic ferromagnet. Phys. Rev. B 91, 014412 (2015).

27. Loth, S., Lutz, C. P. & Heinrich, A. J. Spin-polarized spin excitation
spectroscopy. N. J. Phys. 12, 125021 (2010).

28. Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. Cp2K: atomistic
simulations of condensed matter systems. Wiley Intdisciplin. Rev. Comput. Mol.
Sci. 4, 15–25 (2014).

29. CP2K developers group. CP2K Open Source Molecular Dynamics. CP2K
Website http://www.cp2k.org/ (2015).

30. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P.
Electron-energy-loss spectra and the structural stability of nickel oxide: an
LSDAþU study. Phys. Rev. B 57, 1505–1509 (1998).

31. Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators:
Hubbard U instead of Stoner I. Phys. Rev. B 44, 943–954 (1991).

32. Cococcioni, M. & de Gironcoli, S. Linear response approach to the calculation
of the effective interaction parameters in the LDAþU method. Phys. Rev. B 71,
035105 (2005).

33. Perdew, J. et al. Restoring the density-gradient expansion for exchange in solids
and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

34. Caneschi, A., Gatteschi, D. & Totti, F. Molecular magnets and surfaces: a
promising marriage. A DFT insight. Coord. Chem. Rev. 289–290, 357–378
(2015).

35. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab
initio parametrization of density functional dispersion correction (DFT-D) for
the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

36. Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian
pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

37. VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on
molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105
(2007).
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