English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice

MPS-Authors
/persons/resource/persons182736

Halle,  A.
Max Planck Research Group Neuroimmunology, Center of Advanced European Studies and Research (caesar), Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Heneka, M. T., Kummer, M. P., Stutz, A., Delekate, A., Schwartz, S., Vieira-Saecker, A., et al. (2013). NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature, 493(7434), 674-678. doi:10.1038/nature11729.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0028-617F-E
Abstract
Alzheimer's disease is the world's most common dementing illness. Deposition of amyloid-beta peptide drives cerebral neuroinflammation by activating microglia. Indeed, amyloid-beta activation of the NLRP3 inflammasome in microglia is fundamental for interleukin-1beta maturation and subsequent inflammatory events. However, it remains unknown whether NLRP3 activation contributes to Alzheimer's disease in vivo. Here we demonstrate strongly enhanced active caspase-1 expression in human mild cognitive impairment and brains with Alzheimer's disease, suggesting a role for the inflammasome in this neurodegenerative disease. Nlrp3(-/-) or Casp1(-/-) mice carrying mutations associated with familial Alzheimer's disease were largely protected from loss of spatial memory and other sequelae associated with Alzheimer's disease, and demonstrated reduced brain caspase-1 and interleukin-1beta activation as well as enhanced amyloid-beta clearance. Furthermore, NLRP3 inflammasome deficiency skewed microglial cells to an M2 phenotype and resulted in the decreased deposition of amyloid-beta in the APP/PS1 model of Alzheimer's disease. These results show an important role for the NLRP3/caspase-1 axis in the pathogenesis of Alzheimer's disease, and suggest that NLRP3 inflammasome inhibition represents a new therapeutic intervention for the disease.