Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Theory of light-enhanced phonon-mediated superconductivity

MPG-Autoren
/persons/resource/persons182604

Sentef,  Michael A.
HISKP, University of Bonn, Nussallee 14-16, D-53115 Bonn, Germany;
Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free Electron Laser Science, 22761 Hamburg, Germany;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1505.07575.pdf
(Preprint), 928KB

PhysRevB.93.144506.pdf
(Verlagsversion), 945KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sentef, M. A., Kemper, A. F., Georges, A., & Kollath, C. (2016). Theory of light-enhanced phonon-mediated superconductivity. Physical Review B, 93(14): 144506. doi:10.1103/PhysRevB.93.144506.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0028-4EAA-D
Zusammenfassung
We investigate the dynamics of a phonon-mediated superconductor driven out of equilibrium. The electronic hopping amplitude is ramped down in time, resulting in an increased electronic density of states. The dynamics of the coupled electron-phonon model is investigated by solving Migdal-Eliashberg equations for the double-time Keldysh Green's functions. The increase of the density of states near the Fermi level leads to an enhancement of superconductivity when the system thermalizes to the new state at the same temperature. We provide a time- and momentum-resolved view on this thermalization process and show that it involves fast processes associated with single-particle scattering and much slower dynamics associated with the superconducting order parameter. The importance of electron-phonon coupling for the rapid enhancement and the efficient thermalization of superconductivity is demonstrated, and the results are compared to a BCS time-dependent mean-field approximation.