Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Meeting Abstract

Impact of the vapour pressure of water on the equilibrium shape of ZnO nanoparticles: An ab-initio study

MPG-Autoren
/persons/resource/persons136331

Kenmoe,  Stephane
Atomistic Modelling in Interface Science, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125433

Todorova,  Mira
Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125054

Biedermann,  Paul Ulrich
Atomistic Modelling, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125293

Neugebauer,  Jörg
Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kenmoe, S., Todorova, M., Biedermann, P. U., & Neugebauer, J. (2014). Impact of the vapour pressure of water on the equilibrium shape of ZnO nanoparticles: An ab-initio study. In DPG Spring Meeting 2014, Abstract: O50.6.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0028-495E-5
Zusammenfassung
ZnO powders and nanoparticles are used as catalysts and have potential applications in gas-sensing and solar energy conversion. A fundamental understanding ofthe exposed crystal facets, their surface chemistry and stability as function of environmental conditions is essential for rational design and improvement of synthesis and properties. Using density-functional theory calculations we study the adsorption of water on the non-polar low-index (10-10) and (11-20) surfaces of ZnO. Observing both molecular and dissociative H2O adsorption, we analyse the contributions of water-surface and water-water interactions to the energies of the stable structure.Based on this insight we compute and analyse the impact of water adsorption on surface energies and the equlibrium shape of nanoparticles in a humid environment.