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Abstract: While detecting genetic variations underlying brain structures helps reveal mechanisms of
neural disorders, high data dimensionality poses a major challenge for imaging genomic association
studies. In this work, we present the application of a recently proposed approach, parallel independent
component analysis with reference (pICA-R), to investigate genomic factors potentially regulating gray
matter variation in a healthy population. This approach simultaneously assesses many variables for an
aggregate effect and helps to elicit particular features in the data. We applied pICA-R to analyze gray
matter density (GMD) images (274,131 voxels) in conjunction with single nucleotide polymorphism
(SNP) data (666,019 markers) collected from 1,256 healthy individuals of the Brain Imaging Genetics
(BIG) study. Guided by a genetic reference derived from the gene GNA14, pICA-R identified a signifi-
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cant SNP-GMD association (r 5 20.16, P 5 2.34 3 1028), implying that subjects with specific genotypes
have lower localized GMD. The identified components were then projected to an independent dataset
from the Mind Clinical Imaging Consortium (MCIC) including 89 healthy individuals, and the
obtained loadings again yielded a significant SNP-GMD association (r 5 20.25, P 5 0.02). The imaging
component reflected GMD variations in frontal, precuneus, and cingulate regions. The SNP compo-
nent was enriched in genes with neuronal functions, including synaptic plasticity, axon guidance,
molecular signal transduction via PKA and CREB, highlighting the GRM1, PRKCH, GNA12, and
CAMK2B genes. Collectively, our findings suggest that GNA12 and GNA14 play a key role in the
genetic architecture underlying normal GMD variation in frontal and parietal regions. Hum Brain
Mapp 36:4272–4286, 2015. VC 2015 Wiley Periodicals, Inc.
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INTRODUCTION

Studying associations between genetic variables and
imaging traits is a valuable strategy, a maturing field
known as imaging genetics, which holds the promise to
help better understand the genetic underpinnings of cogni-
tion and reveal biological mechanisms of mental disorders
[Thompson et al., 2014]. Structural magnetic resonance
imaging (sMRI) provides a noninvasive approach to study
the morphology of the living brain. Quantitative measures
are derived from T1-weighted MRI images using computa-
tional methods such as voxel-based morphometry (VBM)
[Ashburner and Friston, 2005] or cortical surface recon-
struction (FreeSurfer) [Fischl and Dale, 2000] to depict var-
ious structural features, including brain volume, gray
matter volume, cortical thickness, and surface area. These
features can then be compared at subject level for their
functional implications. Under this strategy, biomarkers
have been consistently identified from both healthy and
diseased human brains, characterizing neural develop-
ment, ageing, Alzheimer’s disease, schizophrenia, and so
on [Ellison-Wright et al., 2008; Frisoni et al., 2010; Giedd
and Rapoport, 2010; Raz and Rodrigue, 2006]. More
importantly, many attributes of brain structure, including
both global and regional traits, are confirmed to be geneti-
cally influenced in twin studies, with heritability estimated
around 40–90% [Peper et al., 2007; Thompson et al., 2001;
Winkler et al., 2010].

Heterotrimeric guanine nucleotide-binding proteins (G-
proteins) serve as molecular switches in intracellular sin-
gling cascades, where they sense signals from cell-surface
receptors that are activated by extracellular stimuli and
transduce signals to downstream effectors [Oldham and
Hamm, 2008]. It has been documented that activated G-
proteins directly interact with a variety of effector proteins,
including phosphodiesterase E, phospholipase D, phos-
pholipase C, inducible nitric oxide synthase, calcium chan-
nels, and the G protein-regulated inducer of neurite
outgrowth 1 and 2 [Cabrera-Vera et al., 2003]. Particularly,
G-proteins are richly expressed in the brain and involved
in cortical development, neuronal growth as well as neuro-

nal signaling [Bromberg et al., 2008; Hamm, 1998;
Offermanns, 2001]. For instance, there is evidence that G
protein alpha 12 and alpha 13 can mediate growth cone
collapse and neurite retraction [Nurnberg et al., 2008],
while deficiency of the G-protein a-subunits causes local-
ized overmigration of neurons in the developing cerebral
and cerebellar cortices [Moers et al., 2008]. Knockout of G
protein beta 5 impairs brain development and causes mul-
tiple neurologic abnormalities in mice [Zhang et al., 2011].
Neural expression of G protein-coupled receptor 3, 6, and
12 has been implicated in up-regulating cyclic AMP
(cAMP) levels in neurons and stimulating neurite out-
growth [Tanaka et al., 2007].

Given their roles in neural development, G-proteins
pose promising candidates for imaging genetic association
studies. More recently, Chavarria-Siles et al. [2013] investi-
gated 502 single nucleotide polymorphisms (SNPs) in
25 G-protein genes for their associations with brain-wide
gray matter volume using a mass univariate model. They
identified seven SNPs to be significantly associated with
gray matter volume variation in different brain regions,
including the medial frontal cortex. While this work pro-
vides direct evidence that G-protein SNPs are related to
brain structure, the univariate analysis is not able to assess
the aggregate effects of multiple variants. In addition, con-
sidering that G-proteins are key cell signaling molecules
and affect multiple biological processes, their effect on
neurobiological conditions is likely not isolated but
involves a large network. Therefore, a multivariate study
is strongly encouraged to search for G-protein involved
genetic components that may better delineate the basis of
the gray matter variation.

In the present work, we applied a semi-blind multivari-
ate approach, parallel independent component analysis
with reference (pICA-R) [Chen et al., 2013], to explore G-
protein involved genomic factors underlying brain struc-
ture in a large homogeneous cohort of 1,256 healthy Cau-
casians. Brain-wide gray matter density (GMD) images
were analyzed in conjunction with genome-wide SNP
data. G-proteins identified in the work by Chavarria-Siles
et al. [2013] served as references to guide the analysis but
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the method still allows for other genetic variants to be
revealed as well.

MATERIALS AND METHODS

Participants

BIG

A large cohort was used for discovery to increase the
statistical power. This step was performed using the Brain
Imaging Genetics (BIG) dataset, an ongoing effort being
conducted at the Radboud University Nijmegen together
with the Max Planck Institute for Psycholinguistics (Nijme-
gen, the Netherlands) [Bralten et al., 2011; Cousijn et al.,
2012]. The regional medical ethics committee approved the
study and all subjects provided written informed consent.
Specifically in this work, a total of 1,256 healthy Cauca-
sians were admitted into the investigation, including 617
males (age: 23.28 6 4.11 years) and 843 females (age:
22.67 6 3.61 years) for which both neuroimaging and geno-
type data were collected [Guadalupe et al., 2014]. All sub-
jects are typically highly educated and free of neurological

or psychiatric history according to self-report. To be noted,
an overlap of subjects might exist between the present
study and Chavarria-Siles et al.’s study. The latter
employed 532 healthy BIG subjects.

MCIC

In the validation step, we used the subjects from the
Mind Clinical Imaging Consortium (MCIC) study [Gollub
et al., 2013], a collaborative effort of four research teams
from University of New Mexico-Mind Research Network,
Massachusetts General Hospital, University of Minnesota,
and University of Iowa. The institutional review board at
each site approved the study and all subjects provided
written informed consent. Out of 255 subjects, 89 were
healthy Caucasians, including 51 males (age: 31.41 6 10.39
years) and 38 females (age: 33.61 6 11.50 years). These sub-
jects were employed to validate the results obtained from
the BIG data. All healthy subjects were screened to ensure
that they were free of any medical, neurological, or psychi-
atric illnesses, including any history of substance abuse.

Neuroimaging

BIG

Structural images were acquired at the Donders Centre
for Cognitive Neuroimaging (Nijmegen, The Netherlands)
using different scanners, i.e., 1.5 T Siemens Avanto and
Sonata, as well as 3.0 T Siemens Trio and TIM Trio. Trans-
mitting and receiving coils also differed across subjects. A
standard sagittal T1-weighted three-dimensional magnet-
ization prepared rapid gradient echo (MP-RAGE) sequence
was employed, while some variations were observed in
repetition, inversion, and echo time, as well as pixel band-
width and flip angle. The use of parallel imaging with an
acceleration factor of 2 was also included. Table I summa-
rizes the settings used in BIG sMRI scans.

MCIC

The MCIC structural images were coronal T1-weighted
MRIs collected at multiple sites. Table II lists the setting
used in the scans. It can be seen that scanners differed
among 1.5 T Siemens Sonata and GE Signa, as well as 3.0
T Siemens Trio. Closely matched acquisition sequences
were used. However, repetition time and pulse sequence
varied somewhat.

Preprocessing

The T1-weighted sMRI data were preprocessed at the
Mind Research Network with Statistical Parametric Map-
ping 5 (SPM5, http://www.fil.ion.ucl.ac.uk/spm) using
unified segmentation [Ashburner and Friston, 2005] in
which image registration, bias correction, and tissue classi-
fication are performed using a single integrated algorithm.

TABLE I. Summary of BIG scanning parameters

Scanning parameter Variations across subjects

Station name avanto (462), sonata (160), trio
(52), triotim (582),

Sequence name *tfl3d1 (13), *tfl3d1_ns (983),
spc3d1rr282ns (5), tfl3d1 (1),
tfl3d1_ns (254),

Repetition time 1660 (3), 1960 (13), 2250 (539),
2300 (615), 2730 (81), 3200 (5),

Echo time 2.02 (3), 2.86 (1), 2.92 (22), 2.94
(1), 2.95 (462), 2.96 (183), 2.99
(14), 3.03 (348), 3.04 (1), 3.08
(1), 3.11 (1), 3.13 (1), 3.55 (1),
3.68 (148), 3.93 (51), 4.43 (7),
4.58 (3), 401 (5), 5.59 (3),

Inversion time 1000 (81), 1100 (627), 750 (3), 850
(539), 900 (1), null (5),

Magnetic field strength 1.494 (101), 1.5 (521), 2.89362
(52), 3 (582),

Number of phase
encoding steps

176 (3), 196 (5), 253 (5), 255 (565),
256 (677), 320 (1),

Pixel bandwidth 130 (636), 140 (611), 240 (1), 260
(3), 751 (5),

Transmitting coil body (1068), cp_head (49),
txrx_head (139),

Flip angle 120 (5), 15 (539), 7 (81), 8 (630), 9
(1),

Tcoil ID/receiving coil 32ch_head (215), 8ch_head (573),
body (1), cp_headarray (256),
headmatrix (70), null (2),
txrx_head (139),

Each scanning setting is followed by the number of subjects that
have been scanned using this setting.
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In this way, brains were segmented into gray matter,
white matter, and cerebrospinal fluid and nonlinearly
transformed into the ICBM152 standard space without
Jacobian modulation. The resulting GMD images were re-
sliced to 2 3 2 3 2 mm, resulting in 91 3 109 3 91 voxels.
In the subsequent quality check, we excluded outliers
whose correlations between the individual images and the
across-subject average image were 4 standard deviations
less than the mean. Based on this criterion, four subjects
were excluded from the BIG data and no outliers were
identified for the MCIC data. A mask was then generated
(mean GMD> 0) to include only the segmented gray mat-
ter voxels, resulting in a total of 298,707 voxels for the BIG
data and 292,998 voxels for the MCIC data. A voxelwise
linear regression was performed to remove age and sex
effects to avoid capturing associations majorly driven by
these factors in the subsequent analysis. Furthermore,
considering that the images were acquired with various
scanning platforms, we employed the source-based-
morphometry (SBM) approach [Xu et al., 2009] to investi-
gate and eliminate the image variability introduced by
scanning settings [Chen et al., 2014b]. Specifically, the data
were decomposed into a linear combination of underlying
sources using independent component analysis (ICA)
[Amari, 1998; Bell and Sejnowski, 1995]. The loadings of
each component were then assessed for associations with
available scanning parameters. Components significantly
affected by scanning settings were then identified and
eliminated from the original data. Following this, nine
scanning-related components were removed for the BIG
data (Table I) and eight scanning-related components
removed for the MCIC data (Table II). After correction, we

did not observe any significant scanning effects. Finally,
the corrected data were smoothed with an 8-mm full
width at half-maximum Gaussian kernel and thresholded
at mean GMD> 0.1 (resulting in 274,131 voxels) for the
subsequent association analysis.

Genotyping

BIG

Saliva samples were collected from participants for
DNA extraction. Genotyping was then conducted using
the Affymetrix GeneChip SNP 6.0 array spanning more
than 906,600 SNPs. The call rate threshold was set to 90%.

MCIC

DNA was extracted from blood samples. Genotyping for
all participants was performed using the Illumina Infinium
HumanOmni1-Quad assay spanning 1,140,419 SNP loci.
BeadStudio was used to make the final genotype calls.

Imputation

To maximize the number of overlapping SNPs between
two datasets, we imputed the MCIC data up to 5M SNPs
using the MACH/Minimac pipeline [Howie et al., 2012]
leveraging a large reference panel of the 1,000
Genomes data [Altshuler et al., 2012], as described in the
ENIGMA protocol (http://enigma.ini.usc.edu/). We fur-
ther excluded those imputed SNPs whose estimates of the
squared correlations between imputed genotypes and true

TABLE II. Summary of MCIC scanning parameters

Site M021 (51) M552 (92) M554 (47) M871 (44)

Scanner Siemens Avanto GE Signa Siemens Trio Siemens Sonata
Scanning sequence GR RM IR\GR GR
Sequence name *fl3d1_ns N/A *tfl3d1_ns (19),

tfl3d1_ns (28)
*fl3d1_ns (35),

fl3d1_ns (9)
Slice thickness (mm) 1.5 1.5 (20), 1.6 (38),

1.7 (31), 1.8 (3)
1.5 1.5

TR/TE (ms) 12/4.76 20/6 2530/3.81 12/4.76
Number of averages 1 1 (2), 2 (90) 1 1
Magnetic field strength (T) 1.494 1.5 2.8936 1.494
Number of phase encoding steps 256 N/A 256 288
Percent phase field of view 100 100 100 100
Pixel bandwidth 160 122 180 110
Receiving coil cp_head 8ch_head 8ch_head 8ch_head
Acquisition matrix 0 256 256 0 0 256 256 0 0 256 256 0 0 256 256 0
Flip angle 20 30 7 20
Pixel spacing 0.625 0.625 (11),

0.70313 0.70313 (40)
0.625 0.625 (32),

0.66406 0.66406 (16),
0.70313 0.70313 (44)

0.625 0.625 0.625 0.625 (42),
0.70313 0.70313 (2)

Each site is followed by the number of subjects that have been scanned using this setting, which also applies if a scanning setting varies
within a site.
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unobserved genotypes (rsq) were lower than 0.3, as recom-
mended by the developer of the tool. To be consistent
with the BIG data, the MCIC genotype data were obtained
based on the continuous imputation data using the
Genome-wide Complex Trait Analysis (GCTA) tool [Yang
et al., 2011].

Data cleaning

PLINK software [Purcell et al., 2007] was used to per-
form a series of standard quality control procedures. SNPs
and subjects were first examined for a genotyping rate
threshold of 90%; SNPs were excluded if they showed
deviation from Hardy–Weinberg Equilibrium with a
threshold of 1026 or if they failed to be missing at random
with a threshold of 10210; minor allele frequency cut-off
was set to 0.01. Potential relatives were excluded if the
Identity-By-Descent (IBD) was higher than 0.1875. For the
BIG data, we first replaced the missing genotypes using
haplotype genotypes of high linkage disequilibrium (LD)
loci (correlation> 0.85). After the above procedures, miss-
ing genotypes were still observed in 134,607 out of 671,782
autosomal SNPs with missing ratios no greater than 0.05.
We then replaced the remaining missing genotypes using
the major alleles of individual loci. Discrete numbers were
then assigned to the categorical genotypes: 0 for no minor
allele, 1 for one minor allele, and 2 for two minor alleles.
Finally, 666,019 common loci were genotyped or imputed
in both the BIG and MCIC data. These loci were included
for the association and validation analysis.

Association Analysis

pICA-R [Chen et al., 2013] was employed to identify
relationships between hidden factors of particular attribute
within two data modalities, as illustrated in Figure 1. In
this work, pICA-R estimates underlying components for
the GMD images (Modality 1) and the SNP data (Modality
2) independently and in parallel. The data decomposition
builds upon the regular infomax ICA framework [Bell and
Sejnowski, 1995], which identifies sets of co-varying varia-
bles that are independent from each other and organizes
them into different components, as described in Eq. (1),
where X represents the observed data matrix (subject 3

voxel/SNP); S, A, and W denote the component, loading/
mixing, and unmixing matrix, respectively. The subscript
d runs from 1 to 2, denoting the data modality.

Xd5AdSd ! Sd5WdXd; Ad5W21
d ; d51; 2

Yd5
1

11e2Ud
;Ud5WdXd1Wd0

(1)

Mathematically, pICA-R iteratively updates the unmix-
ing matrices W1 and W2 to gradually optimize the objec-
tive functions F1, F2, and F3, as described in Eqs. (2) and
(3). F1 is the objective function of the regular infomax for
Modality 1, where independence among components is

achieved by maximizing the entropy H. fy(Y) is the proba-
bility density function of the sigmoid function Y. E is the
expected value and W0 is the bias vector. In contrast, F2 is
the objective function for Modality 2, where an additional
Euclidean distance metric is imposed to extract maximally
independent components, one of which also closely resem-
bles the reference r. To avoid false positives, the constraint
weight k is adaptively adjusted so that the distance metric
is not over-emphasized. The inter-modality correlation
function F3 is designed to maximize the correlations com-
puted over the columns of the loading matrices A1 and
A2, capturing connections between pairs of inter-modality
components.

F15max H Y1ð Þf g5max 2E ln fy1 Y1ð Þ
� �� �

F25max kH Y2ð Þ1 12kð Þ 2dist2 ~r; j~S2kj
� �� �� �

5max k 2E ln fy2 Y2ð Þ
� �� �

1 12kð Þ 2jjjW2k
~X2j2~rjj22

� 	n o

(2)

F35max
X

i;j

Corr2 A1i;A2ið Þ

8<
:

9=
;5max

X
i;j

Cov2 A1i;A2ið Þ
Var A1ið ÞVar A2ið Þ

8<
:

9=
;
(3)

The reference r is a binary vector with the same number
of loci as the genomic data, where the selected referential
loci are set to “1” and the rest are “0”s. This binary refer-
ence serves as a mask such that the distance between the
component and reference vector is optimized particularly
for the referential loci only. This design enables a semi-
blind decomposition, where the presumed causal loci are
constrained to be highlighted in the resulting component
while the remaining loci are allowed to show their own

Figure 1.

Flow chart of pICA-R. W1 and W2 denote the unmixing matri-

ces of the two modalities, respectively. F1, F2, and F3 represent

the objective functions based on which unmixing matrices are

updated.
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importance driven by the data. For a full description of
the mathematical details of pICA-R, we refer readers to
the original publication [Chen et al., 2013].

Specifically in this work, the genetic references were
derived from genes encoding heterotrimeric G-proteins.
We leveraged the results from an imaging genetics study
reporting associations between gray matter volume varia-
tions and SNPs in G-protein coding genes [Chavarria-Siles
et al., 2013]. Among the seven genes identified in that pre-
vious work, GNA15, GNAO1, and GNB5 covered less than
10 SNPs in our data, therefore were not tested as referen-
ces given that simulation results suggested an optimal ref-
erence of 20 true causal loci [Chen et al., 2013]. For the
remaining four genes, GNG2, GNAQ, GNA14, and GNAL,
we identified the corresponding SNPs in each gene and
grouped neighboring SNPs with moderate correlations
(r2> 0.2, [Ripke et al., 2011]) into a cluster. The largest
cluster within each gene was then used as the reference.
This is because SNPs in one gene do not necessarily con-
tribute simultaneously to only a single component, which
is against the design of pICA-R. Instead, SNPs in one LD
cluster are more likely to contribute to the same compo-
nent and serve as good candidates for reference given that
a marker allele in LD with the causal variant should show
(by proxy) an association with the trait of interest
[Stranger et al., 2011]. In this way, we tested four referen-
ces hosted by GNG2, GNAQ, GNA14, and GNAL.

Like infomax ICA, pICA-R requires estimating the num-
ber of components before data decomposition. Minimum
description length (MDL) [Rissanen, 1978] is commonly
used for the imaging modality to select the component
number yielding the most efficient representation of the
original data. However in the SNP data, most genetic fac-
tors account for small amounts of variance, except for
those related to population structure. Thus, MDL is much
less applicable to select the component number such that
the major variance in the data is retained. Instead, we
chose to estimate the component number based on compo-
nents’ consistency, to obtain the most stable data decom-
position [Chen et al., 2012].

Validation

The genetic references were implicated in the work by
Chavarria-Siles et al. [2013] which used a portion of the
current BIG data. Unfortunately, we did not have a
detailed list of the subjects used in that work and could
not investigate whether our finding would hold in the
non-overlapping portion of the BIG data. Instead, we used
the independent MCIC data to assess the validity of the
imaging genetic associations identified in the BIG data. As
pICA-R’s performance would significantly degrade given
the MCIC sample size of 89 and 666,019 SNPs [Chen et al.,
2013], we chose to project the sMRI and SNP components
identified in the BIG data to the MCIC data to obtain the
new loading coefficients, as described in Eq. (4):

~S
BIG21

d 5SBIG21

d jtop voxels =SNPs; d51; 2

AMCIC
d 5~X

MCIC

d
~S

BIG21

d

(4)

where the subscript “d” runs from 1 to 2, denoting the

sMRI and SNP modality, respectively. SBIG21

d represents
the pseudo inverse of the component matrix extracted

from the BIG data. ~S
BIG21

d and ~X
MCIC

denote respectively

the submatrices of SBIG21

and the MCIC observed data, cor-
responding to the top voxels or SNPs presenting relatively
stronger correlations with the loadings. AMCIC represents
the loaing matrix estimated through projecting the top
voxels or SNPs. We expect that the loadings obtained in
this way should more accurately reflect the effects of the
most important markers. Finally, the correlations between
the projected loadings were calculated to assess whether
the sMRI-SNP association identified in the BIG data
remained significant in the MCIC data.

Analyzing Components

To understand the influences on cognition, the identified
SNP and sMRI components were further investigated for
associations with available phenotypic data, which was
the reversal learning score collected for 599 out of 1,256
BIG subjects. In addition, top contributing voxels of the
identified sMRI component were mapped to the Talairach
atlas [Lancaster et al., 1997, 2000] for the involved brain
regions. Meanwhile, top contributing SNPs were annotated
and the hosting genes were sent for Ingenuity Pathway
analysis (IPA, http://www.ingenuity.com/) to reveal the
genetic architecture.

RESULTS

The number of components was estimated to be 10 and
11 for the sMRI and SNP data, respectively. Among all the
tested references, the one derived from GNA14 elicited a
significant sMRI-SNP association (r 5 20.16, P 5 2.27 3

1028). This exceeded the conservative Bonferroni threshold
of 1.14 3 1024 which corrected for all the tested four
genetic references and the combinations of all extracted
components (10 sMRI 3 11 SNP) in each run. The refer-
ence comprised 22 out of 83 SNPs from GNA14, as listed
in Supporting Information Table S1. These SNPs are in
moderate LD, presenting a mean r-square of 0.54, and dis-
tanced by an average of 2,557 base pairs. The sMRI-SNP
association remained significant, exhibiting a correlation of
20.16 (P 5 2.34 3 1028) when the SNP component was
controlled for age and sex, as shown in Figure 2a. Besides,
the SNP-sMRI association remained significant (P 5 3.30 3

1027) when the top three principal components of the SNP
data were further included as covariates [Ripke et al.,
2011], indicating that the observed association was not
likely attributable to ancestral background. The associated

r G-Protein and Gray Matter Density r

r 4277 r

http://www.ingenuity.com


sMRI component was thresholded at |Z|> 2 for top vox-
els. The number of top SNPs was determined based on the
absolute values of the component z-scores using a more
conservative linear fitting approach (for details see Sup-
porting Information Figure S1), yielding a total of 2,000
top SNPs corresponding to |Z|> 3.37. We then projected
the top voxels and SNPs to the MCIC data, and the result-
ing loadings again yielded a significant correlation of
20.25 (P 5 0.02) when controlling for age and sex, as
shown in Figure 2b. To be noted, the projected association
was robust to the threshold selection, remaining significant

with a number of top SNPs ranging from 1,000 to 2,500.
No association was observed between the identified
sMRI/SNP component and the reversal learning score.

The top contributing voxels of the sMRI component
were further mapped to nearest gray matter to obtain the
Talairach atlas labels [Lancaster et al., 1997, 2000]. Figure 3
and Table III show the spatial map and the mapped
regions, respectively. It can be seen that the identified
brain network comprised superior and medial frontal gyri,
precuneus, and cingulate gyrus. For the SNP component,
Supporting Information Table S2 provides a summary of

Figure 2.

Scatter plots of (a) the single nucleotide polymorphism (SNP) and sMRI loadings identified in the

BIG data; and (b) the SNP and sMRI loadings obtained from the MCIC data through projection.

Figure 3.

Spatial map of the identified sMRI component (|Z|> 2). [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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the top contributing SNPs, including chromosome, base
pair position, corresponding gene, minor allele, and com-
ponent z-score. From the GNA14 reference, five SNPs were
identified as top contributors to the associated SNP
component, including rs10869927_G (“G” for the minor
allele), rs10781441_T, rs12684903_A, rs2889774_T, and
rs7047853_G. Figure 4 shows a Manhattan plot of weights
of loci for the identified SNP component, where clusters
are marked if they span more than five SNPs with maxi-
mum normalized weights greater than 5. Out of the top
2,000 SNPs, 803 are intragenic and mapped to 272 unique
genes, including another G-protein, GNA12, and two G-
protein-coupled receptors, GPR113 and GPR133. IPA
revealed that these 272 genes were significantly enriched
in a number of canonical pathways, including synaptic
long-term potentiation (LTP) and depression (LTD), axonal
guidance, protein kinase A (PKA), CREB, and nNOS sig-
naling, as listed in Table IV. In particular, all the pathways
highlighted in bold remained significantly enriched when
the number of top SNPs was adjusted from 1,000 to 2,500,
indicating a relatively consistent genetic architecture. We
also explored through IPA potential interactions between
selected genes of interest, including GNA12, GNA14,
GRM1, PRKCD, CAMK2B, and PDIA3. The constructed
network is illustrated in Supporting Information Figure S2.

DISCUSSION

In this work, we applied pICA-R to explore genomic
basis of brain structure in a homogeneous cohort of
healthy Caucasians. G-proteins arose as potential referen-
ces given that they are implicated in neural development.
A previous univariate study [Chavarria-Siles et al., 2013]
provided more direct evidence for associations between G-
protein SNPs and regional gray matter variations. We then
leveraged these results and derived four genetic references
which were then investigated in the semi-blind multivari-
ate framework. In the BIG dataset which included 1,256
subjects, a GNA14 reference elicited a significant SNP-
sMRI association (r 5 20.16, P 5 2.34 3 1028), while the
other three tested references did not yield any significant
finding. As discussed by Chen et al. [2013], references
derived from univariate models do not always yield signif-
icant findings in multivariate analyses. This might be due

to various factors. One possibility is that the reference
SNPs may have heterogeneous effects and contribute to
different components. Or the related network as a whole
may not be well represented in this specific dataset.

Using a semi-blind multivariate approach, we identified
extended SNP and sMRI components compared to the pre-
vious work by Chavarria-Siles et al. The identified brain
network consisted of medial frontal gyrus, superior frontal
gyrus, precuneus, and cingulate regions. To be noted, the
medial frontal cortex was also identified by the Chavarria-
Siles et al. that employed 532 BIG subjects and used a dif-
ferent method. Regarding the genetic modality, five refer-
ence SNPs from GNA14, as expected, were identified as
top contributors to the associated SNP component. The
SNP highlighted in Chavarria-Siles et al. (rs4745639) was
not included in the reference, however it showed moder-
ate LD with rs2889774 and rs10869927 (r2 of 0.15 and 0.14,
respectively), and all contributed with negative component
weights. The elicited SNP component was enriched in
pathways related to neuronal functions, as listed in Table
IV. More importantly, the identified association was fur-
ther replicated in the independent MCIC dataset. Com-
pared to univariate analyses, pICA-R assesses multiple

TABLE III. Talairach labels of identified brain regions (|Z| > 2)

Brain region Brodmann area L/R volume (cm3) L/R random effects, max Z (x, y, z)

Medial frontal gyrus 6, 8, 32, 9, 10 13.9/8.7 6.53 (0,16,47)/5.79 (2,26,65)
Superior frontal gyrus 6, 8, 9, 10 12.3/9.6 7.15 (0,14,53)/6.01 (2,14,53)
Precuneus 7, 19 8.0/6.0 6.44 (0,247,63)/6.29 (2,247,63)
Paracentral lobule 5, 4, 6, 31, 7 5.2/4.1 7.01 (0,241,65)/6.63 (2,243,63)
Cingulate gyrus 24, 32, 31 4.0/2.0 5.59 (0,2,48)/4.79 (2,18,43)
Postcentral gyrus 5, 7, 4, 3, 2 3.5/3.5 6.75 (22,241,65)/6.81 (2,241,65)
Middle frontal gyrus 6, 8 2.7/2.9 2.88 (228,1,61)/3.38 (28,5,59)

Figure 4.

Manhattan plot for the identified single nucleotide polymorphism

(SNP) component. The horizontal line indicates the threshold at

|Z|> 3.37 for selection of top contributing SNPs. Clusters are

marked if they span more than 5 SNPs with maximum normal-

ized weights greater than 5. The GNA14 cluster is also marked.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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variables for the aggregate effect. For the SNP modality,
pICA-R is well posed to model polygenicity and to cap-
ture the additive effect of multiple SNPs with moderate
individual effects [Chen et al., 2013; Polderman et al.,
2015]. For the sMRI modality, pICA-R extracts patterns of
variations shared by regional and distant voxels [Xu et al.,
2009]. And imaging genetic associations are then evaluated
between the SNP and sMRI components’ loadings. Thus,
our results delineate a genomic basis underlying a propor-
tion of the GMD variation in the highlighted frontal and
parietal regions.

The spatial map of the identified sMRI component
clearly highlighted the midline of brain, which is fre-
quently implicated in neural development, ageing, and
cognition [Frangou et al., 2004; Lyuksyutova et al., 2003;
Shaw et al., 2006; Sowell et al., 2003]. Prefrontal cortex is
known to be involved in complex cognitive behavior and
decision making [Koechlin and Hyafil, 2007; Koechlin
et al., 2003]. Precuneus plays a key role in highly inte-
grated tasks, including episodic memory retrieval, self-
referential processes, and consciousness [Laureys et al.,
2004; Lundstrom et al., 2005; Ochsner et al., 2004]. Cingu-
late cortex is an integral part of the limbic system and
active in a variety of cognitive functions such as emotion,
learning and memory [Bush et al., 2000]. More interest-
ingly, these regions are also among those showing rela-

tively significant structural variations for different age and
intelligence groups. A VBM study demonstrated positive
correlations between IQ and GMD in voxel clusters dis-
tributed along the brain midline, including frontal cortex,
cingulate, and precuneus [Frangou et al., 2004]. At superior
and medial frontal gyri, the trajectories of cortical thickness
change with age are found to be different between the supe-
rior and the high/average intelligence groups [Shaw et al.,
2006]. Besides, axons extend on either side of the midline
(anterior–posterior axis) to form longitudinal tracts and the
midline cells are crucial for guiding axon outgrowth [Lyuk-
syutova et al., 2003]. These observations suggest that the
identified brain network captures regional GMD co-
variations that can play a role in cognitive abilities and
might reflect inter-individual differences in brain
development.

The SNP component was overrepresented in a number
of pathways communicating with each other and with G-
proteins. From those shown in Table IV, LTP and LTD are
two forms of synaptic plasticity that affect signal transmis-
sion between neurons and have been widely studied to
understand the mechanisms underlying learning and
memory [Martin et al., 2000; Neves et al., 2008]. It is
believed that glutamate receptors are major triggers for the
induction of LTP and LTD, where PKA, protein kinase C
(PKC), calcium/calmodulin-dependent protein kinase II

TABLE IV. Pathway analysis on the identified SNP component

Ingenuity canonical pathways Molecules P-value

Neuropathic pain signaling in dorsal
horn neurons

NTRK2, KCNQ2, GRM1, PDIA3, KCNQ3,
PRKCH, CAMK2B

6.76 E204

Inositol pyrophosphates biosynthesis IP6K3, PPIP5K1 4.37 E203
Histidine degradation III UROC1, AMDHD1 5.75 E203
Histidine degradation VI UROC1, AMDHD1 7.41 E203
Synaptic long-term potentiation GRM1, PDIA3, PRKCH, GNA14, ADCY8,

CAMK2B

7.59 E203

Protein kinase A signaling EPM2A, PTPRK, PTPRD, PTPRJ, PDIA3,

PDE8B, PRKCH, ADCY8, EYA2, PTPRT,

NTN1, CAMK2B

8.51 E203

Axonal guidance signaling PDIA3, GNA12, GNA14, ADAMTS2, NTN1,

SRGAP3, NTRK2, NTRK3, EFNA5, PAK7,

PRKCH, WNT5A, GLIS1

1.05 E202

CREB signaling in neurons GRM1, PDIA3, GNA12, PRKCH, GNA14,

ADCY8, CAMK2B

1.32 E202

Synaptic long-term depression GRM1, PDIA3, GNA12, PLA2R1, PRKCH,

GNA14

1.62 E202

Sulfate activation for sulfonation PAPSS2 2.95 E202
Formaldehyde oxidation II

(glutathione-dependent)
ESD 2.95 E202

Glutamine degradation I GLS 2.95 E202
nNOS signaling in neurons DLG2, PRKCH, NOS1AP 3.09 E202

Endothelin-1 signaling PDIA3, GNA12, PLA2R1, PRKCH, GNA14,
ADCY8

3.89 E202

GNRH signaling PAK7, PRKCH, GNA14, ADCY8, CAMK2B 4.07 E202
RhoGDI signaling GNA12, ARHGAP12, CDH18, PAK7, GNA14,

CDH13
4.37 E202

Methionine salvage II (Mammalian) BHMT2 4.37 E202
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(CaMKII) can all play a role [Collingridge et al., 2004].
CREB is majorly activated by cAMP through PKA [Del-
ghandi et al., 2005]. In particular, a behavioral experience
can elicit synaptic activities which activate CREB, inducing
expression of molecules contributing to consolidating
changes in synaptic strength [Benito and Barco, 2010].
Axon guidance strongly relies on a number of cue mole-
cules, among which netrins are the most well understood.
It has been demonstrated that netrins retain the function
of attracting axons toward the brain midline while also
repelling some axons, and responses to the guidance cue
netrin-1 (NTN1) are sensitive to levels of cAMP or PKA
activity [Dickson, 2002]. Neuronal nitric oxide synthase
(nNOS) is a biosynthetic enzyme functioning in several
types of synaptic plasticity, including LTP and LTD [Bon
and Garthwaite, 2003; Nelson et al., 1995]. The phosphoryl-
ation of nNOS is regulated by kinases and phosphatases
such as PKA, PKC, and CaMKII [Zhou and Zhu, 2009]. It
is noteworthy that G-proteins are involved in the signaling
cascades of all these cellular machineries, including gluta-
mate, cAMP, PKA, PKC, CREB, and CaMKII [Neves et al.,
2002].

Among the enriched pathways, overlaps of genes were
observed, including GRM1, PRKCH, GNA12, GNA14, and
CAMK2B. GRM1 encodes a metabotropic, G protein-
coupled receptor for glutamate, the major excitatory neu-
rotransmitters in the central nervous system [Hermans
and Challiss, 2001]. A total of 10 SNPs from GRM1 were
identified as top contributors to the component in our
analysis. Nine out of these 10 SNPs contributed positively
(see Supporting Information Table S2 for details). Note
that the SNP-sMRI correlation was negative, indicating
that subjects with higher loads of the SNP component car-
ried relatively lower loads of the sMRI component. Also,
the highlighted brain regions presented positive compo-
nent weights, indicating that subjects with higher loads of
the sMRI component had higher regional GMD. Thus, for
these SNPs presenting positive component weights, our
finding suggested that, overall, subjects carrying more
minor alleles at these loci showed reduced GMD in the
highlighted brain regions. Only one out of the 10 top SNPs
in GRM1 (rs854144_T) contributed with a negative weight,
indicating more minor alleles found in subjects exhibiting
increased regional GMD. PRKCH is another molecule of
great importance as it encodes a PKC subtype. PKCs phos-
phorylate a wide range of protein targets involved in brain
functioning. For instance, phosphorylation of GluR1 by
PKC is demonstrated to be critical for LTP expression
[Boehm et al., 2006]. In our analysis, one single SNP
rs1957902_G was identified from PRKCH, presenting a
negative weight. GNA12 and GNA14 fall into the G-
protein subfamilies of G12 and Gq. GNA12 has been indi-
cated to negatively regulate cell adhesion through interact-
ing with cadherin [Meigs et al., 2002]. GNA14 is among
the genes which were found to exhibit developmental
expression variations in the cortex of a marmoset animal

model, and linked to axonal guidance [Sasaki et al., in
press]. In the present study, rs2258960_T and rs2644311_T
were identified from GNA12 and presented positive
weights. For GNA14, rs10869927_G and rs2889774_T showed
negative weights while rs10781441_T, rs12684903_A, and
rs7047853_G showed positive weights. CAMK2B encodes a
Ca21/calmodulin-dependent protein kinase involved in cal-
cium signaling. The expression of this gene has been found
to be disrupted in Alzheimer’s disease [Antonell et al., 2013;
Liang et al., 2008]. Three SNPs, rs12702075_A, rs10281178_C,
and rs3934888_G, were identified from CAMK2B, all exhibit-
ing negative weights.

Both the imaging and genetic findings from our analysis
link strongly to neural development, indicating that the
observed GMD variations might be traced back to devel-
opmental processes under control of genetic factors. It is
well acknowledged that genetic components underlie ana-
tomic variations in healthy and diseased human brains
[Andersen, 2003; Giedd, 2005; Sotelo, 2004]. Direct associa-
tions between genetic variants and quantitative structural
measures have also been demonstrated in large-scale stud-
ies [Bis et al., 2012; Stein et al., 2012]. Compared with pre-
vious works using univariate approaches, our results
delineate relationships between particular genetic path-
ways and regional structural variations, emphasizing that
these G-protein-related PKA, CREB, and nNOS mecha-
nisms play a critical role in brain development which
might ultimately lead to GMD differences. On the other
hand, it should be noted that brain structure is the final
manifestation of a complex interplay between multiple
genetic and environmental factors. Our analysis captured
a part of the story.

The current study benefited from a large homogeneous
discovery sample which enhances statistical power. In
addition, the employed multivariate approach assessed a
group of variables whose aggregate effects would be more
prominent compared to those of individual variables. Lev-
eraging prior knowledge further improved the chance of
pinpointing factors of interest in a large complex dataset.
Most importantly, the imaging genetic association identi-
fied from the discovery sample was replicated in an inde-
pendent cohort, indicating a low possibility of false
positive results. On the other hand, one major limitation of
this study lies in the different scanning platforms
employed for imaging data collection, which can be a
potential confound. To address this issue, we carefully
explored all the scanning settings and eliminated from the
imaging data the variance most likely induced by scanning
discrepancies based on a linear model. Nonlinear scanning
effects might still exist for which we do not have any
knowledge at present. However, such effects were not
expected to significantly contribute to the identified imag-
ing genetic association given the linear decomposition of
ICA. Another limitation is that it is not clear yet how the
identified components are related to behavior based on the
available data. The identified local GMD variations have
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been implicated in intelligence studies; however we did
not collect IQ data in this project. Instead we investigated
whether this imaging trait was correlated with the avail-
able reversal learning scores and found no significant asso-
ciations. Further work needs to be done to better
understand how the genetic and GMD variations might
lead to differences in behavior. Besides, it should be noted
that SNPs in high LD would exhibit comparable effects in
our analysis. Therefore, SNPs might be identified due to
tagging true causal variants. However, the identified genes
and pathways should be unchanged. Finally, following the
design of pICA-R, we only tested the largest cluster as a
genetic reference for each candidate gene in this work,
ignoring other smaller clusters which might also be biolog-
ically informative. This could be tackled with an extended
approach, parallel ICA with multiple references [Chen
et al., 2014a], which explores potential convergence of
functional influences among genes. We plan to conduct
such an analysis in a future study.

In summary, we performed a guided exploration in the
present study, where a reference derived from the GNA14
gene managed to elicit a genetic component significantly
associated with an sMRI component in a semi-blind multi-
variate analysis. The associated genetic component high-
lighted several neural signaling pathways which appear to
interact with each other and are active in synaptic plasticity
and axonal guidance. Meanwhile, the identified brain net-
work comprised regions recruited in various cognitive proc-
esses and robustly implicated in brain maturation and
intelligence. Collectively, our study suggests a key role of G-
proteins in the genetic architecture underlying normal GMD
variations in frontal and parietal regions. We speculate that
the observed GMD variations partially result from differen-
tial genetic modulation of brain development, though future
longitudinal studies are needed to dissect genetic contribu-
tion to trajectories of anatomic changes in developing brains.
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