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ABSTRACT

This paper presents DIANA, a new computational
model of human speech processing. It is the first
model that simulates the complete processing chain
from the on-line processing of an acoustic signal
to the execution of a response, including reaction
times. Moreover it assumes minimal modularity.

DIANA consists of three components. The activa-
tion component computes a probabilistic match be-
tween the input acoustic signal and representations
in DIANA’s lexicon, resulting in a list of word hy-
potheses changing over time as the input unfolds.
The decision component operates on this list and se-
lects a word as soon as sufficient evidence is avail-
able. Finally, the execution component accounts for
the time to execute a behavioral action.

We show that DIANA well simulates the average
participant in a word recognition experiment.
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1. INTRODUCTION

Psycholinguistic studies show that the cognitive pro-
cesses underlying speech comprehension are com-
plex (for an overview, see e.g. [1]). Computational
models that implement theories of these processes
greatly facilitate our understanding of how humans
recognize speech [10]. This paper presents DIANA,
a new computational model of speech comprehen-
sion. DIANA builds on ideas that underlie previ-
ous computational models, most notably Shortlist B
[15], and SpeM [19].

Importantly, DIANA differs from all models in
two important respects. First, it simulates the com-
plete processing chain from the on-line processing
of an acoustic signal to the execution of a response,
including reaction times (RTs). To our knowl-
edge, only SpeM [19] and FineTracker [18] take the
acoustic signal itself as its input, instead of some
handcrafted symbolic representation of this signal,
and no model simulates the execution of a response.
Because DIANA simulates the complete processing

chain, it can receive exactly the same input as human
listeners in an auditory experiment, and its behavior
can be directly compared with humans participants’
behavior. Secondly, DIANA differs from all mod-
els in that it assumes minimal modularity, which im-
plies that it does not make intermediate decisions but
postpones all hard decisions towards the end of the
decision making (see e.g. [12, 13, 15]).

In this paper we present DIANA and test its
plausibility by comparing its simulation with partic-
ipant’s behavior in a word recogntion experiment.

2. DIANA

2.1. General description

DIANA simulates three interrelated processes: a
word activation process, a decision process, and an
execution (’effector’) process. The activation pro-
cess computes a probabilistic match between the
input acoustic signal and the word representations
in DIANA’s lexicon, which, in combination with
the word frequencies, determine the word activation
scores. These scores are updated as the acoustic sig-
nal unfolds, and result in a ranked list of word candi-
dates (’word hypotheses’), which changes over time.
This time-varying list of word candidates forms the
input to the decision process, which operates in par-
allel with the activation process. As soon as suf-
ficient acoustic evidence is available, the decision
process settles for a specific word. Once such a deci-
sion has been made, the execution process converts
the decision into an observable action.

2.2. The Activation component

The activation component in DIANA takes the
acoustic signal as input. Its output is a time-varying
ranked list of word candidates. It makes use of
a lexicon that contains orthographic and phonemic
representatons of words, as well as the prior prob-
abilities of these words. The design and imple-
mentation of DIANA supports the use of other
units than phonemes, or even episodic representa-



tions [5, 6, 17].
In order to process acoustic input, DIANA con-

verts the input signal into sequences of vectors (one
vector per 10ms, 100 vectors/s), each vector con-
sisting of 13 Mel-Frequency Cepstral Coefficients
(MFCC, [2]), augmented with their first and second-
order time derivatives [9].

To match the input signal with candidate words,
each phone symbol in DIANA’s lexicon is rep-
resented as a three-state hidden Markov model
(HMM). The acoustic characteristics of each of
these three states are represented by Gaussian mix-
ture models (GMMs) that specify the distributions
of the MFCC vectors associated to that state.

The Activation component of DIANA is imple-
mented with the hidden Markov toolkit HTK [25].
As in Shortlist B [15], DIANA’s matching func-
tion is based on a Bayesian framework, which allows
for an elegant and mathematically principled way to
compute the activation of a word candidate on the
basis of acoustic evidence and the word’s prior prob-
ability. During the course of the input, the activation
of each word candidate is computed incrementally
after each 10ms input.

In DIANA, the activation of a word candidate is
computed via a weighting between the bottom-up
acoustic match and the top-down prior probability:

(1)
P(word | acoustics)∼ P(acoustics | word) · (P(word))γ

The parameter γ determines the relative weight of
P(word) and P(acoustics | word). A value of γ

equal to 0 corresponds to total ignorance of word
frequency; when γ is high, the activation of a word
is primarily determined by its frequency.

2.3. The Decision component

DIANA can make a decision as soon as the differ-
ence between the activation of the leading word can-
didate and alternative runner-up candidates exceed
a threshold. (In this competition there is no lateral
inhibition between the competing candidates, fol-
lowing Shortlist B[15], SPeM [19] and FineTracker
[18].) That is, a decision is made if

log(P(leader | acoustics)) −(2)
log(P(runner_up | acoustics)) > θ

in which θ is a model parameter that depends on the
task as well as on the strategy that the listener uses
for completing the task.

Reaction time If the criterion (Eq. 2) is met be-
fore stimulus offset, DIANA’s reaction time is the

detection time (the time at which this criterion is
met) plus the execution time.

It often occurs, however, that this criterion is not
met at stimulus offset, in line with the finding that in
many word recognition and lexical decision experi-
ments a large proportion of the RTs (measured from
stimulus onset) are (much) longer than the sum of
the duration of the acoustic stimulus and the time
it takes to externalize a decision by means of some
action [22, 7, 3]. In that case, additional choice
reaction time, required to differentiate between the
highest ranked candidates [14, 4], is added to DI-
ANA’s reaction time. In DIANA, this additional re-
action time is modelled by β times the logarithm of
the number of remaining candidates wordi at stim-
ulus offset for which log(P(leader | acoustics))−
log(P(wordi | acoustics))≤ θ .

2.4. The Execution component

The execution process in DIANA accounts for the
time it takes to effectuate the decision in the form of
overt behavior. In the current implementation, this
delay is fixed at 200 ms for every participant and
assumed to be independent of the stimulus.

3. WORD RECOGNITION EXPERIMENT

3.1. Experimental Method

Participants Twenty native Dutch listeners (10
male, 10 female), between 18 and 23 years of age
(average 19.4), and all undergraduate students at
Radboud University Nijmegen, were paid to partici-
pate in the experiment. None of them reported hear-
ing loss or cognitive problems.
Materials The stimuli consisted of 613 real Dutch
words: 314 nouns (125 singulars and 189 plurals),
80 adjectives, and 219 verb forms (80 infinitives,
52 present tense forms, 40 weak past tense forms,
4 strong past tense forms, and 43 participles). Each
word was bisyllabic, and comprised only one stem.
The average number of phonemes per word is 5.2,
with a standard deviation of 1.0.

The same 613 words are also incorporated in
BALDEY, a large auditory lexical decision exper-
iment in Dutch [3], for which a female speaker
has read aloud the stimuli carefully, one by one,
in a sound attenuated booth. We re-used these au-
dio recordings for our word recognition experiment.
The durations of the 613 word realizations vary from
273 to 947 ms (mean: 552 ms; sd: 132 ms).

For the experiment, we created 20 random order-
ings of the 613 stimuli, one for each participant.
Procedure The participants were seated in a sound-



attenuated booth and listened to the stimuli over
headphones at a comfortable loudness level. They
had to press a button as soon as they had recognized
the stimulus and to subsequently repeat the word.

The button box was connected to a dedicated PC
running E-prime [20] as the main process. The au-
ditory stimulus immediately stopped at the moment
the button was pressed. The time interval between
the onsets of subsequent stimuli was 3000 ms.

Per participant, the list of 613 stimuli was split
into four sublists and participants were offered the
opportunity to take short rests between sublists. One
experiment session took approximately 50 minutes
per participant.
Analysis of the participant data We analyzed the
RT data in order to see whether participants show
the expected patterns of word frequency and word
duration. If they do, this will confirm that these RTs
reflect word recognition times (instead of some task
strategy). Moreover, the size of the word frequency
effect will indicate the psychological plausibility of
the gamma that we will need to simulate these data.

From this analysis we excluded the 1253 re-
sponses (10%) that were incorrect or for which the
RT values were implausibly short (not shorter than
200 ms) or implausibly long (more than two stan-
dard deviations longer than the participant’s mean).

Linear mixed effects modeling (in R v3.1.2, [23])
with as dependent variable log(RT ), with as fixed
effects previous log(RT ), stimulus duration, trial in-
dex and word frequency (extracted from CGN, [16]),
without interactions, and with subject and word as
random effects (without random slopes), shows that
word frequency is a significant (β̂ =−3.22×10−03,
df = 1, t = 2.42) predictor, also after removal of
outliers. In all models, (log) word duration is also
a robust predictor (β̂ = 6.52× 10−04, df = 1, t =
27.9). These and similar results show that this word
recognition experiment provided valid data consis-
tent with what could be expected on the basis of
previous psycholinguistic experiments (e.g. lexical
decision, [3]).

3.2. DIANA simulation

DIANA’s settings For DIANA’s Activation com-
ponent we used speaker-independent HMM-based
acoustic phone models for Dutch [8] (32 Gaus-
sians/state), and adapted these models towards the
speaker by applying HERest in HTK [25] on an in-
dependent set of 500 words.

DIANA’s lexicon contains 24,878 words, includ-
ing the 613 words in the experiment. The word fre-
quencies were based on the Spoken Dutch Corpus

(CGN) [16]. Words in DIANA’s lexicon that did
not occur in [16] were given a word frequency of 1.
Assessment We assessed DIANA by comparing its
error rate and RTs for the correct responses with
those produced by the human participants. Since
DIANA does not simulate local trends in the RTs
([11, 24, 21]), local trends were removed from the
observed human RTs by subtracting the folowing
moving average filter:

(3)
maRT[i] =α · log(RT[i−1])+(1−α) ·maRT[i−1]

Here, α is a parameter that determines the impact
of previous RTs. The value of α is between 0 and
1. We filtered the RTs using an α of 0.17 since
this value resulted in the highest correlation aver-
aged across all pairs of participants (0.242). This
value amounts to a history of approximately 6 previ-
ous stimuli having an effect on the RT on the current
stimulus, in full agreement with [11].

DIANA RTs were assessed by computing the
Pearson correlation between DIANA’s simulated
RT sequence and the RT sequence of the ’average
participant’, that is, the RT sequence that results
from averaging the filtered RTs per stimulus across
all participants. This average sequence can be con-
sidered the best estimation of the RTs as generated
by the cognitive processes that are common to all
participants.
Modeling results As discussed above, DIANA’s
performance is determined by the values of the pa-
rameters γ , θ , and β . Here we only discuss the role
of θ . The parameters γ and β were set to their opti-
mal values (0.8 and 0.1, respectively).

The parameter θ determines how much evidence
the model needs to select a word candidate. A high
θ implies that the model needs substantial evidence,
and as a consequence produces only fewer errors but
also long reaction times.

Figure 1 shows the role of θ on DIANA’s behav-
ior. In this figure, the squares show the correlation
(r) between the log(RT) sequence produced by DI-
ANA and the log(RT) sequence averaged over the
20 human participants, as a function of θ . The cir-
cles show the percentage of stimuli for which DI-
ANA did not make any decision before stimulus
offset, as a function of θ . The correlation between
the simulated and the observed RT values reaches
a maximum of 0.767 at θ = 100. This value of θ

corresponds to a rather conservative regime in DI-
ANA’s decision process: only about one third of all
decisions in the Activation module are made before
stimulus offset. DIANA’s word error rate is then
5.2%.



Figure 1: DIANA as function of θ . The squares
show the correlation (r, left axis) between the
log(RT) sequences produced by DIANA and the
average log(RT). The circles show the percentage
(right axis) of stimuli for which DIANA did not
made any decision before stimulus offset.

For the optimal parameter setting, Figure 2 shows
the scatter plot of the log(RT) sequence generated by
DIANA and the human average log(RT) sequence.
The Pearson correlation is r = 0.76, so that DI-
ANA accounts for 58% of the variance in the av-
erage scores of the participants.

4. DISCUSSION

In this paper we presented DIANA, a new computa-
tional model of word comprehension, which, in con-
trast to all previous models, assumes minimal modu-
larity and simulates the complete chain from the on-
line processing of an acoustic signal to the execution
of a response. DIANA is based on previous com-
putational models of word recognition and incorpo-
rates the knowledge that the field of psycholinguis-
tics has gathered on human spoken word recognition
in the last decennia.

In addition, we tested DIANA by conducting a
word recognition experiment with human partici-
pants and by comparing the average RTs with those
produced by DIANA. We found that DIANA can
produce RTs that show a correlation of 0.77 with the
average human RTs, so that DIANA accounts for
58% of the variance in the participants’ average RTs.
It obtains this correlation while producing 5.2% of
word recognition errors, while the participants pro-
duced error rates in the range from 3% to 16% (av-
erage: 9.5%).

This correlation with the human participant data
was obtained with values for the model parameters

Figure 2: DIANA’s RT predictions versus the av-
eraged RTs from the 20 participants.

that are cognitively plausible. The optimal value of
γ (0.8) indicates that word frequency played a clear
role, as also indicated by the statistical analyses of
the human participant data. The optimal value of β

(0.1) indicates that the model does not simply select
the word with the highest activation score at stim-
ulus offset, but takes the serious word competitors
into account leading to additional choice reaction
time. Finally, the optimal value of θ (100) shows
that the best match with participants is obtained if
the model waits before selecting a word until the
winning candidate substantially differed in activa-
tion score from the runner up.

These results strongly suggest that the assump-
tions on which DIANA is based approximate well
the mechanisms underlying the word comprehen-
sion process in human listeners. Moreover, it im-
plies that DIANA can now be taken as a baseline
model that can be enriched to test hypotheses about
other aspects of human speech comprehension, in-
cluding the recognition of word pronunciation vari-
ants and the recognition of words (cognates and non-
cognates) in a second language.

In conclusion, DIANA is a computational model
of speech comprehension in that it can be tested by
providing it with exactly the same input as human
participants in psycholinguistic experiments and by
comparing its output with these participants’ output.
Its performance on a word recognition task shows
that it simulates well the mechanisms underlying hu-
man speech perception.
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