PspF-binding domain PspA_{1–144} and the PspA·F complex: New insights into the coiled–coil-dependent regulation of AAA+ proteins

Hendrik Osadnik,¹ Michael Schöpfel,² Eyleen Heidrich,¹ Denise Mehner,¹ Hauke Lilie,² Christoph Parthier,² H. Jelger Risselada,³† Helmut Grubmüller,³ Milton T. Stubbs,² Thomas Brüser¹‡

¹Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover 30419, Germany.
²Institute of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle (Saale) 06120, Germany.
³Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany.

Summary

Phage shock protein A (PspA) belongs to the highly conserved PspA/IM30 family and is a key component of the stress inducible Psp system in Escherichia coli. One of its central roles is the regulatory interaction with the transcriptional activator of this system, the σ⁵⁴ enhancer-binding protein PspF, a member of the AAA+ protein family. The PspA/F regulatory system has been intensively studied and serves as a paradigm for AAA+ enzyme regulation by trans-acting factors. However, the molecular mechanism of how exactly PspA controls the activity of PspF and hence σ⁵⁴-dependent expression of the psp genes is still unclear. To approach this question, we identified the minimal PspF-interacting domain of PspA, solved its structure, determined its affinity to PspF and the dissociation kinetics, identified residues that are potentially important for PspF regulation and analyzed effects of their mutation on PspF in vivo and in vitro. Our data indicate that several characteristics of AAA+ regulation in the PspA·F complex resemble those of the AAA+ unfoldase ClpB, with both proteins being regulated by a structurally highly conserved coiled-coil domain. The convergent evolution of both regulatory domains points to a general mechanism to control AAA+ activity for divergent physiologic tasks via coiled-coil domains.

Introduction

Phage shock protein A (PspA), identified in filamentous phage infected cells of Escherichia coli 25 years ago, (Brissette et al., 1990) is the archetype of the conserved PspA/IM30 family that encompasses members in bacteria (Jordan et al., 2006), archaea (Bidle et al., 2008) and plant chloroplasts (Kroll et al., 2001). As part of a stress inducible system (the Psp system, for reviews see Darwin, 2005, Joly et al., 2010, Model et al., 1997, Yamaguchi and Darwin, 2012), PspA was found to interact with two small membrane proteins and putative sensors, PspB and PspC (Adams et al., 2003), as well as with PspF (Dworkin et al., 2000), the transcriptional activator of the system, resulting in a negative feedback-loop. Because of the propensity of PspA to associate with membranes (Brissette et al., 1990) and to oligomerize (Hankamer et al., 2004; Standar et al., 2008), it has been proposed that the Psp system is a membrane stress responsive system. Recent studies strengthen this interpretation, showing that PspA switches interaction partners from PspF to PspBC during overproduction of membrane-weakening, pore-forming secretins (Mehta et al., 2013; Yamaguchi et al., 2013; Flores-Kim et al., 2015). Still, overproduction of several other proteins that do not affect membrane stability also highly induces psp (Horstemann and Darwin, 2012), suggesting that multiple signals might exist and are integrated in psp regulation (Engl et al., 2011). Clearly, a thorough analysis of the regulatory interaction of PspA and PspF, the last, unifying switch in psp induction, is imperative for understanding of the system.

PspF is an extensively studied member of the bacterial enhancer-binding proteins (eEBP), specialized AAA+ proteins (Neuwald et al., 1999) needed for alternative sigma factor (σ⁵⁴)-dependent transcription. Briefly, hexameric PspF binds σ⁵⁴ and, via ATP hydrolysis, promotes the open complex formation of the DNA-bound RNA polymer-
The structure of PspF was solved a decade ago (Rappas et al., 2005), and numerous studies have probed the function of PspF in transcriptional activation (Chaney et al., 2001; Cannon et al., 2004; Rappas et al., 2005; 2006; Joly et al., 2006; Bose et al., 2008; Burrows et al., 2010; Zhang et al., 2013; Sharma et al., 2014). The interaction with its regulator PspA (which in trans takes the part of the usual cis-regulatory domains of other bEBPs) is however poorly understood. It is known that PspA and PspF can form a complex (Joly et al., 2009), which leads to inhibition of ATPase activity (Elderkin et al., 2002) and down-regulation of psp expression in vivo (Dworkin et al., 2000). It is thought that the PspA-F complex likely consists of 6 PspA per 6 PspF (Elderkin et al., 2002; 2005; Joly et al., 2009; Zhang et al., 2013). An exposed loop on PspF around Trp56 has been identified as a PspA-binding determinant (Elderkin et al., 2005; Zhang et al., 2013), and the PspF-binding region (FBR) in PspA has been localized in the fragment PspA1–186 (Elderkin et al., 2005; Joly et al., 2009), with a recent study suggesting that residues 25–40 form an amphipathic helix important for PspF inhibition (Jovanovic et al., 2014). Still, the lack of any PspA/IM30 family structure precludes a detailed understanding of the proteobacterial PspA-F complex as well as other PspA-like proteins on a molecular level.

In vitro work with full-length or fragmented PspA has been challenging, as the stability of activity strongly relied on the addition of detergents (Elderkin et al., 2002). We overcame those issues by identifying the PspF regulatory core domain in PspA that lacks membrane-interacting or oligomerization properties and is fully functional in the absence of detergent over longer periods of time with respect to PspF-binding and inhibition in vivo and in vitro. We present the crystal structure of this domain at 1.8 Å resolution, identify the PspF-binding surface and characterize regulatory influences of single amino acid exchanges on the activity of PspF in vivo and in vitro. The PspA-F complex has a striking resemblance to the AAA+ unfoldase ClpB (Lee et al., 2003) and its regulatory middle domain, showing that regulation of AAA+ proteins via coiled-coil domains evolved convergently for AAA+ proteins of diverse functions.

Results

Identification of PspA1–144, the PspF-inhibiting domain of PspA

The σ⁺⁺ activator PspF is an important example for a AAA+ family protein that does not contain intrinsic regulatory domains, but instead is regulated by another protein, PspA, in trans. On a molecular and structural level, it is still largely unresolved how this regulation is achieved, and we therefore intended to obtain more information about the involved structures and interactions. PspA is difficult to study as it can not only interact with PspF, but also with membrane components such as PspC or lipids (Brissette et al., 1990; Adams et al., 2003), and it can self-associate to form large superstructures (Hankamer et al., 2004; Standar et al., 2008). To circumvent issues arising from those characteristics that are unrelated to the PspA-PspF interaction, we sought to identify the minimal PspF-interacting domain of PspA. A previous fragmentation approach that was based on a helical domain prediction (HD1–4, Fig. 1A; Elderkin et al., 2005; Joly et al., 2009) already indicated that PspF-binding determinants are located in the not oligomerizing fragment PspA1–186. However, PspA1–186 was less effective than full-length PspA (PspA1–222) in PspF-ATPase inhibition (Joly et al., 2009), still partially associated with the membrane and was purified by a protocol that employs detergent to preserve solubility (Elderkin et al., 2005; Jovanovic et al., 2014), indicating that PspA1–186 still contains determinants unrelated to PspF-binding. It is thus important to recognize possible functional domains in PspA. In previous studies, PspA was predicted to comprise a large number of more or less likely coiled-coils that are organized in four helical domains (Joly et al., 2009). When we performed a coiled-coil prediction using COILS, the outcome was much less complex. COILS predicted three large coiled-coil regions (CC1–3) that did not correspond to the helical domains that were the basis of earlier fragmentation approaches (Fig. 1A). Importantly, CC2 ended at amino acid 144, which is 42 residues earlier than the end of the previous PspA1–186 construct. As it is known that regions within the first 67 residues and after residue 110 are important for PspF regulation (Joly et al., 2009), it seemed possible that CC1 and CC2 are responsible for PspF regulation, and that the 42 amino acid extension of CC2 in PspA1–186 somehow supports the membrane interaction of this construct (Jovanovic et al., 2014).

We thus generated PspA1–144, which comprises the native N-terminal region (NTR) and only the two predicted coiled-coil domains CC1 and CC2 (orange, Fig. 1A). PspA1–144 and full-length PspA turned out to essentially indistinguishably inhibit PspF-dependent psp expression in a ΔpspA reporter strain over the course of 15 hours, suggesting that both interact similarly with PspF (Fig. 1B, left). Neither protein had a negative effect on growth (Fig. 1B, right). However, the two proteins differed in their subcellular localization. In agreement with previous analyses, overproduced full-length PspA localized to both the membrane and cytoplasmic fractions (Yamaguchi et al., 2010). In contrast, PspA1–144 was exclusively soluble, indicating that the membrane-interacting trait of PspA had been removed (Fig. 1C). Consequently, we were now able to purify his-tagged PspA1–144 from the cytoplasmic frac-
tion without the need of detergents for keeping the protein in solution. Subsequent equilibrium sedimentation experiments (analytic ultracentrifugation, AUC) showed that purified PspA1–144 was exclusively monomeric (Fig. 1D), indicating that it also lacks the determinants for self-association. Thus, PspF interaction is mediated by a domain that comprises the N-terminal 2/3rds of PspA, whereas self-association as well as detectable membrane interaction require the truncated C-terminal regions, possibly including CC3.

Crystal structure of PspA1–144 reveals similarity to the M-domain of the AAA+ protein ClpB

Having the stable, monomeric and soluble PspF-interacting PspA domain at our hands, we were able to crystallize this protein and solved its structure to a resolution of 1.8 Å (Fig. 2A). This is the first member of the conserved PspA/IM30 family to be crystallized. PspA1–144 forms an extended monomeric structure in which the two coiled-coil regions CC1 and CC2 (see Fig. 1A) form an intramolecular anti-parallel coiled-coil (Pro25-Arg142) linked by a tip region (Ala75-Leu91). A short NTR (Ile3-Val11) covers a hydrophobic patch on CC1 (Fig. 2A, Fig. S1A-C), connected to CC1 by a flexible linker (residues Asn12-Glu23), with Asp24 acting as an N-cap to the CC1 helix. Three highly flexible residues in this linker (Lys20, Ala21, Glu23) could not be resolved. In atomistic molecular dynamics simulations that included these residues, the NTR remained attached to the coiled coil while the flexibility of the linker was confirmed (Fig. S1D,E). Conservation of residues contributing to intramolecular coiled-coil stabilization (Fig. 2B, green) and tip formation (red) within proteins of the PspA/IM30 family indicates...
that the \textit{E. coli} PspA\textsubscript{1–144} structure presented here reflects the general architecture of this family, including the well-studied VIPP1 from chloroplasts and LiaH from \textit{Bacillus subtilis}.

A search for structurally related proteins using the program DALI (Holm et al., 2008) yielded a number of coiled-coil containing protein domains (as expected for such a common structural element) of varying lengths and little to no functional similarity. Interestingly, PspA\textsubscript{1–144} showed significant structural similarity (Z-score 6.6, top 10% of all hits) to the coiled-coil M-domain of the ClpB family of AAA+ unfoldases/disaggregases, although they have alternative permutations of the secondary structure elements, as CC1 of PspA is represented by two helical domains in ClpB (Fig. 3B and C), which is known to decrease the Z-score of similar folds (Holm and Rosenstrom, 2010). This domain (ClpB-MD), which is found as an insertion within the AAA+ domain and adorns the peripheral surface of the hexameric ring, regulates the disaggregase activity of ClpB by modulating its ATPase activity (Schirmer et al., 2004; Oguchi et al., 2012). The highly similarly sized PspA\textsubscript{1–144} and ClpB-MD superimpose with an r.m.s.d. (root-mean-square deviation) of 1.1 Å for backbone atoms (Fig. 3A; see Fig. S2 for stereo images).

Variants of PspA\textsubscript{1–144} reveal a FBR on CC1

We investigated residues of PspA\textsubscript{1–144} that are responsible for PspF binding and regulation by characterizing the phenotypes of amino acid substitutions in CC1 positions that are conserved in \(\gamma\)-proteobacteria (Fig. S3A), suggestive of a possible interaction interface with the likewise conserved PspF. When produced in a \(\Delta\text{pspA}\)-lac\textsubscript{Z} reporter strain with a \(\Delta\text{pspA}\) background, several of these PspA\textsubscript{1–144} variants resulted in less \textit{psp} repression in comparison to the wild-type fragment (including R30A and E37A,

![Fig. 2.](image-url) The crystal structure of PspA\textsubscript{1–144} shows the conserved architecture of PspA/IM30 family proteins. Conserved amino acids: green, red—structurally important amino acids; yellow—others.

A. Crystal structure of PspA\textsubscript{1–144} shown in cartoon representation, conserved residues as sticks. The short loop of amino acids 23–24 was modelled as no electron density for these residues was observed.

B. Overall conservation histogram and detailed excerpts for well-studied members of the PspA/IM30-family. For orientation, CC-domains of PspA\textsubscript{1–144} (as in Fig. 1A), N-terminal region (NTR) and tip domain (tip) are indicated earlier.

![Fig. 3.](image-url) PspA\textsubscript{1–144} (orange) is structurally highly similar to the M-domain of ClpB (ClpB-MD).

A. Superimposition of the backbones of coiled-coiled moieties of both proteins using Swiss-PdbViewer (Guex and Peitsch, 1997). For stereo representations see Fig. S3.

B. Side by side comparison of PspA and ClpB-MD structure as cartoon representation, schematically depicted in (C). CC1 of PspA is divided into two helices (H3/4 and H1) in ClpB-MD, but secondary structure and backbone directions are conserved (arrows indicating N- to C-terminal direction).
Additionally, amino acid substitutions at the very C-terminal end of this conserved region caused more effective repression than the wild-type (R59E, Fig. S3C). Two results of this preliminary screen were especially noteworthy: First, all single amino acid exchange variants retained PspF inhibition to a certain degree since all measured psp levels were markedly below the level of the uninhibited control indicating that these single amino acid exchanges did not fully abolish the functional interaction.

Second, the surface-exposed exchanges with pronounced effects on psp regulation clustered on one side of PspA, which suggested to us that we might have identified the FBR on PspA (Fig. 4A and Fig. S3D).

To address this important aspect further, we extensively characterized two PspA1–144 derivatives in more detail: PspA1–144-E37A, the strongest loss-of-repression variant of a surface residue, exhibiting a ∼20-fold loss in repression; and PspA1–144-R59E, the only derivative causing
enhanced repression relative to the wild-type fragment (0.3-fold psp level, Fig. 4B). Both variants were present in the cytoplasm at a concentration roughly similar to the wild-type fragment (Fig. 4C, compared with Fig. 1C, all localizations were done in parallel). If anything, the amount of PspA1–144-R59E seemed to be slightly lower, indicating that the enhanced repression due to this mutation is not an effect of higher protein concentration. We found PspA1–144-E37A to also form inclusion bodies that resulted in a pronounced accumulation in the cell debris and membrane fractions. As will be shown later, the protein in the soluble fraction nevertheless is monomeric and functional.

We undertook a detailed in vivo analysis of the effects of the two regulatory variants on PspF using a wild-type pspA reporter strain. Our previous experiments were performed in a ΔpspA reporter strain with a strong uninhibited psp promoter activity (up to 25 000 Miller Units shortly after inoculation from an overnight culture, Fig. 1B). This made prolonged induction times necessary to dilute previously accumulated LacZ, not leaving the option to examine differential effects of variants on PspF directly after induction. We therefore tested effects of our variants in the wild-type pspA genetic background, which has a balanced psp expression that is maintained by the auto-regulatory feedback-loop of PspA-dependent PspF inhibition. To ensure that our repression-phenotypes were not caused by varying PspF levels in our reporter strains, endogenous pspF was deleted, and strep-tagged PspF was maintained at a constant level by expressing its gene constitutively from a low-copy plasmid. Western blots confirmed that PspF levels were indeed comparable between the strains at all times (Fig. S4A).

As expected in this pre-regulated Psp system, changes in psp levels because of the expression of PspA1–144 variants in the PspA wild-type background were already visible after 3 h (Fig. 4D, left) and became more pronounced after 18h (Fig. 4D, right). PspA1–144-R59E caused a slight increase in PspF repression relative to WT-PspA1–144 at 3 h with significantly enhanced repression after 18 h, consistent with the data obtained in the ΔpspA strain (Fig. 4B). PspA1–144-E37A induced psp above wild-type level at both time points, turning from a less-effective inhibitor in the ΔpspA background to an activator in the wild-type pspA background. We performed co-elution experiments of the soluble fraction to investigate whether this activating effect was still due to direct interaction with PspF, or whether it was a secondary effect because of the partial inclusion body formation of that variant. Both PspA1–144 and PspA1–144-E37A co-elute PspF-strep with indiscernible strength, indicating that PspA1–144-E37A directly interacts with PspF in the cytoplasm of E. coli while simultaneously inducing the Psp system (Fig. 4E). These co-elution experiments were performed using the same induction time and strength at which we observed the activating effect. These results are in full agreement with the regulatory data obtained with the ΔpspA strain, where PspA1–144-E37A significantly inhibited the PspF-dependent promoter activity, which can most easily be explained by an interaction of PspA1–144-E37A with PspF in vivo (Fig. 4B). We ensured that this effect was not due to the elevated PspF levels by showing that the effect of PspA1–144-E37A was even stronger in the wild-type psp background, i.e. a strain without deletion and trans-complementation of the pspF locus (Fig. S4B). The activating effect of the E37A mutation in a wild-type psp background was unexpected, as the intrinsic repression by endogenous PspA should override expression of a loss-of-function variant as PspA1–144-E37A. It is therefore highly remarkable that a variant of PspA1–144 is dominant over the wild-type PspF inhibition mechanism without being able to regulate PspF at least as effectively as intrinsic PspA. We also found evidence that the activating effect of the E37A mutation was not confined to the PspA1–144 fragment, but that it also existed in the context of full-length PspA: In a wild-type psp background, the E37A mutation led to a 6.7-fold induced psp level relative to the empty vector control (Fig. S4C). It has to be mentioned that this up-regulation, although strong and significant, cannot fully be attributed to the E37A mutation alone, as un-mutated full-length PspA already slightly induced psp after long-term production (2.8-fold), which was a largely PspBC-dependent effect in this experimental setup and thus not a direct effect of the PspA–PspF interaction per se (Fig. S4D). We could further confirm that the E37A variant of full-length PspA still bound PspF comparable with the wild-type full-length protein (Fig. S4E). While the E37A mutation therefore seems to have a comparable physiologic effect in the full-length and truncated fragment, this experiment once more shows the advantage of working with PspA1–144, as it is not prone to secondary effects on PspA-F interaction that can result from oligomerization with the pool of intrinsic PspA as well as from membrane and/or PspBC interaction.

Six PspA monomers bind one hexamer of PspF

We further characterized the PspA–PspF interaction in vitro. Size exclusion chromatography experiments using purified PspA1–144 and PspF1–265 (a stably folding variant lacking the C-terminal DNA-binding domain) clearly showed complex formation of PspA1–144 and PspF1–265 (Fig. S5A). Using AUC, we investigated the dynamics of PspA1–144–PspF1–265 complex formation (for simplicity, called PspA-F complex from now on) in detail. Titrating PspA1–144 to PspF1–265 demonstrated a micromolar dissociation constant (K_D ≈ 1 μM, Fig. 5A). The most strongly psp-inducing FBR-variant PspA1–144-E37A bound PspF1–265 with slightly reduced affinity (K_D ≈ 6 μM), whereas the
super-inhibitory variant PspA1–144-R59E showed binding comparable to the WT (K_D = 0.7 μM). Furthermore, the stoichiometry of binding could be shown to be 1:1 in all cases. As PspF is mostly hexameric at these concentrations (10 μM, Fig. S5B), this ratio corresponds to a complex of six PspA1–144 with six PspF1–265, which is in full agreement with earlier studies (Joly et al., 2009; Lenn et al., 2011; Mehta et al., 2013; Jovanovic et al., 2014). As PspA1–144 is a monomer, these results suggest that one hexamer of PspF possesses six distinct binding sites for monomeric PspA, analogous to the hexameric AAA+ core of ClpB that can interact with the six coiled-coil regulator domains independently.

One PspA monomer is sufficient to stabilize one hexamer of PspF

While examining PspF hexamerization using AUC, we observed that PspF1–265 does not oligomerize spontaneously when present in low concentration (1 μM, Fig. S5B), which is relevant as PspF is thought to exist in low concentration, i.e. just ~130 copies per cell (Jovanovic et al., 1997, PspA: ca. 1500 copies, Valgepea et al., 2013). We therefore wondered whether PspA would also interact with monomeric PspF, or whether PspF needed to hexamerize first. Published gel filtration data using PspF variants suggest that a PspA-F complex is formed independently of the starting oligomeric state of PspF, yet in these experiments both proteins were pre-incubated at high concentrations and PspA was added in excess (Joly et al., 2009).

To our surprise, addition of very low concentrations of PspA (0.08 μM) to 1 μM PspF resulted in the emergence of one fast-sedimenting species of PspA-F (9.4 S, Fig. 5B). At these concentrations, PspA only contributed less than 2% of the overall UV absorption in the sample cell. The fast-sedimenting species therefore comprised around 0.46 μM PspF in the sample cell (~46% of total UV absorption, Fig. S5C). Taking the ratio of applied PspA to shifted PspF into account (0.08:0.46 μM or 1:5.8), these data show that one monomer of PspA1–144 is able to bind and stabilize one hexamer of PspF1–265 over the course of the AUC measurement. No intermediary complexes could be observed. In contrast, PspA1–144-E37A was found to stabilize PspF hexamers only above equimolar concentrations (Fig. 5B, Fig. S5C), while PspA1–144-R59E showed slightly impaired ability to form complexes at low concentrations. These results indicate that sub-stoichiometric PspA stabilizes PspF hexamers and also supports the idea that we have identified a PspA interface important for binding. We would like to note that, while certainly interesting for PspA–PspF interaction studies, PspA-dependent stabilization cannot be a basic prerequisite for PspF hexamerization in vivo, as PspF is active in a ΔpspA strain (Fig. 1B). Therefore, most likely the C-terminal DNA-binding region of PspF, which had to be truncated for effective purification in our experiments, stabilizes PspF hexamers in vivo, as suggested before (Schumacher et al., 2004). The PspA-mediated sub-stoichiometric stabilization of PspF hexamers may thus play only a very minor physiological role, possibly by contributing to the
long-term stability of active PspF. Typically, AAA+ proteins are also strongly bound and stabilized by nucleotides. PspF is unusual in this respect as it binds ATP or ADP only weakly (Joly et al., 2006). Although PspF hexamers are stabilized by nucleotides at protein concentrations above 9 μM (Joly et al., 2006), AUC measurements with near-physiologic 1 μM PspF1-265 indicated no stabilizing effect, even at ADP concentrations of 0.5 mM (ca. fivefold K₀, Fig. S6D, cf. Joly et al., 2006).

Fully saturated PspA·F complex has a basal ATPase activity that can be increased or decreased by PspA variants

The central function of the PspA·F complex, regulation of PspF-dependent transcriptional activity, is tightly linked to the ATPase activity of PspF (Elderkin et al., 2005). Therefore, we examined the influence of WT-PspA1–144 and its FBR-variants PspA1–144-E37A and PspA1–144-R59E on the ATPase activity of PspF in vitro. As predicted, PspA1–144 strongly reduced PspF-ATPase activity (Fig. 5C). However, even the saturated PspA·F complex showed a significant residual ATPase activity of ~18% (Fig. 5D), in accordance with the previous finding that inhibition of PspF-ATPase remains incomplete in the presence of either fragments or full-length PspA (Elderkin et al., 2002; 2005; Joly et al., 2009). As this basal ATPase activity might have been due to an association–dissociation equilibrium of the complex (leading to brief periods of uninhibited PspF following PspA dissociation), we measured the increase of PspF activity after jump dilution, which is dependent on PspA dissociation (Fig. S7A). From these data we determined the half-life for PspA·F to be 43 min (k₀ = 1.69·10⁻⁴ s⁻¹), which strongly argues against fast exchange rates of PspA protomers of PspA·F complexes. In ATPase assays with PspA in sub-saturating concentrations, we found that the strength of ATPase inhibition was dependent on the K₀ of the PspA–PspF interaction (Fig. 5C). PspA1–144 and PspA1–144-R59E with virtually the same K₀ inhibited PspF stronger than PspA1–144-E37A, which has a sixfold higher K₀. However, in assays with PspA-saturated complexes, this K₀-dependence disappeared: In the presence of saturating PspA, the residual ATPase activity of PspF was 30% lower with PspA1–144-E37A and 30% higher with PspA1–144-R59E as compared to WT-PspA1–144 (Fig. 5C). Thus, wild-type or mutated variants can have distinct effects on PspF ATPase that do not necessarily correlate with effects on transcriptional activity of PspF: The exchange E37A leads to a lower ATPase activity in vitro, but higher psp induction in vivo, and vice versa for R59E. As we will discuss in detail later, this disconnection of ATPase and transcriptional activity is countereintuitive, but in agreement with previously reported effects of mutations in the PspF-σ⁵⁴ system.

Atomistic simulations indicate a possible PspA·F complex structure

We tested PspA·F complex formation and stability in a series of atomistic molecular dynamics simulations based on the assumption that six PspA monomers should contact PspF with their FBR and that one of the interaction sites on PspF should be at the W56-loop (Elderkin et al., 2002; Zhang et al., 2013). In one upright orientation in which the binding region contacted both the W56-loop of one PspF protomer and an ATP binding helix (sensor-II domain) on the adjacent PspF, PspA remained bound to PspF during the time course of the simulation (138 ns, four independent simulations) (Fig. S6A, complex depicted in Fig. S6B). In control simulations (in which the binding epitopes on PspA pointed away from PspF), PspA failed to maintain a stable interaction (Fig. S6A). While these simulations are by no means exhaustive, they demonstrate the possibility that PspA engages two PspF protomers, which might explain the stabilization of PspF hexamers by sub-stoichiometric PspA.

Discussion

In this study, we examined the regulatory mechanism of PspA·F-dependent *psp* induction *in vivo* and *in vitro*. We identified the PspF regulating domain of PspA, PspA1–144, a large coiled-coil formed by the helices CC1 and CC2 (Fig. 1A). This large fragment, comprising two-thirds of PspA, was as effective as the full-length protein in *psp* regulation (Fig. 1B). In previous studies, shorter fragments showed impaired PspF interaction (Elderkin et al., 2005; Joly et al., 2009), which clearly indicates that this domain is necessary and sufficient for PspF regulation under non-stress conditions. Because of its monomeric and stably soluble nature (Fig. 1C and D), PspA1–144 allowed us to look at characteristics of the PspA·F complex that eluded observation so far, and it furthermore led us to the first crystal structure of the PspA/IM30 protein family. The conservation of residues that are important for this structure indicates that the PspA architecture must be highly conserved throughout the PspA/IM30 family (Fig. 2B).

Full-length PspA is partially membrane localized and oligomeric whereas PspA1–144 is soluble and monomeric. This is fully compatible with evidence in the literature that point toward a cooperative role of the N- and C-terminal parts of PspA in oligomerization and functions at the membrane. Previous studies have indicated that either deletion of an N-terminal helix (Jovanovic et al., 2014) or point mutations in a part or the C-terminus (Yamaguchi et al., 2010) lead to a change in membrane/PspBC interaction. Given this evidence that membrane-dependent functions rely on having both N- and C-termini present, it
is not surprising that we find an exclusively cytoplasmic location for PspA1–144, lacking its C-terminus. Importantly, the short N-terminal amphipathic helix (residues 2–19) that has previously been implied to interact with membranes (Jovanovic et al., 2014), is laterally docked against CC1 and CC2 in our structure (Fig. S1D). Our structure may thus represent a membrane-detached state with the NTR back-folded to the coiled-coil in some kind of ‘parking’ position, ready to be released for membrane interactions upon some signal. However, this helix alone is clearly not sufficient to mediate a stable membrane interaction of monomeric PspA1–144. The PspF-regulatory domain (CC1 and CC2, residues 23 to 144) is likely not involved in membrane binding, since there is no evidence from the crystal structure for a direct membrane interaction: No amphipathic patches (with exception of those in the folded coiled-coils) are present in this part of the protein, and there are no discernible regions of positively charged surface amino acids, either of which would presumably be important for a direct membrane interaction.

The monomeric state of PspA1–144 likely results from lack of CC3 and the far C-terminal region. This view is in full agreement with previous analyses that suggested a key role of C-terminal regions in PspA for oligomerization and effector function, as a PspA1–136 fragment was already strongly affected in both respects (Joly et al., 2009; Jovanovic et al., 2014). We note that CC3 contains a consensus-motif for short parallel trimeric coiled-coils (amino acids 174–179, see Kammerer et al., 2005), which might indicate that PspA forms trimers when initializing oligomerization. It is however uncertain at this point how exactly oligomerization is achieved and whether or not parts of PspA1–144 have to interact with C-terminal regions directly. The lack of membrane interaction and oligomerization made PspA1–144 suitable for crystallization and PspA·F complex studies. It must be kept in mind that the PspA1–144 construct and the analyzed derivatives thereof are useful to selectively address the regulatory PspF interaction without interfering aspects of membrane interaction, such as recruitment of PspA by PspBC or the effector function. However, we would like to stress that the PspA–PspF interaction certainly has to be seen in the context of the full-length protein and the Psp system it is part of to fully understand the physiologic role of proteins of the PspA/IM30 family. Furthermore, the now established coiled-coil structure of PspA1–144 has to be kept in mind when interpreting effects of PspA fragments that have helices partially removed from within the coiled-coil, which certainly can result in non-physiologic secondary effects because of structural destabilization of the protein and exposition of amphipathic helices that lack their coiled-coil counterpart.

Using PspA1–144 for mechanistic studies, we were able to characterize the PspA·F complex as a highly stable complex with a 6:6 stoichiometry and a basal ATPase activity in vitro. If the stability of the PspA1–144·PspF1–265 complex in vitro (half-life ~ 43 min, Fig. S5E) resembles that in vivo, then the high stability of the complex constrains the mechanism of regulation of psp in vivo and an entirely dissociation-based mechanism that relies on indirect activation of psp via sequestering free PspA to the membrane does not suffice for a rapid psp response. It may thus be required that PspA has to be more actively ‘peeled off’ PspF during induction either by conformational changes in PspA (e.g. mediated by the C-terminus) and/or by conformational changes upon interactions with PspBC or the membrane (Yamaguchi et al., 2013).

Our results support the possibility that PspF activity can in principle be altered without a requirement for PspA-F complex dissociation. An in vivo screen for PspF-inhibition variants of PspA1–144 allowed us to identify a surface patch on PspA that is likely responsible for the regulatory PspF interaction, stretching along the length of the coiled-coil on the side of the protein opposite to the back-folding N-terminus. Detailed characterization of two PspF-regulation variants of PspA1–144 show that mutations in this region can alter the activity of PspA-regulated PspF, likely while bound to PspF (a modulatory interaction), leading to a change in psp levels in vivo as well as in the basal ATPase activity of PspF in vitro. The up-regulating effect of PspA1–144-E37A is a dominant phenotype in a wild-type background while this fragment clearly binds PspF (Fig. 3D and E). Therefore, the bound PspA1–144-E37A represses PspF less effectively than the wild-type protein, which may mimic a post-binding level of PspF regulation in the case of our PspA fragment. Similar post-binding effects on the ATPase activity can be observed in vitro, where the basal activity of the saturated PspA-F complex seems to be modulated by variants relative to the wild-type (Fig. 4D). Interestingly, the mutation E37A, which led to an induction of psp in vivo relative to the wild-type fragment (Fig. 3B, also visible in the full-length PspA, Fig. S4C), exhibited a lower ATPase level in the saturated complex. Similarly, R59E mutation that led to a higher basal ATPase level in vitro repressed psp stronger than wild-type PspA1–144 in vivo (Fig. 5C).

With the current model of PspF-dependent psp regulation in mind, these observations are counterintuitive. However, our results are not unprecedented, as mutations in either PspF or σ54 have similar effects. Although wild-type PspA–PspF-σ54 exhibits a linear correlation between ATPase activity and transcriptional activation, the mutated system does not: Zhang et al. (2013) produced PspF variants essentially without ATPase activity yet hyperactive transcriptionally (e.g., variant G58C). Additionally, enhancer-bypass mutations of σ54 can fully alleviate the requirement for a bEBP (Syed and Gralla, 1997; Chaney and Buck, 1999). Hence, the energy dependence of tran-
scriptional activation in the natural EBP-σ54 system is likely used for tight transcriptional control (see e.g., Sharma et al., 2014). Thus, even though it was unexpected that PspA seems to change the coupling of ATPase and transcriptional activity in PspF while bound to it, the observed effects are similar to those of described variants of PspF and σ54. How could the effect of PspA variants be explained mechanistically? With the emerging pattern for AAA+ function being that controlled, sequential ATPase activity of subunits is highly important (see e.g., Carroni et al., 2014, Glynn et al., 2009, Sysoeva et al., 2013). The PspA variant R59E might lead to a slight desynchronization of PspF subunits, resulting in a higher raw ATPase activity, but decrease in physiologic efficacy of the bEBP, while variant E37A acts vice versa. A modulatory role of PspA would be in agreement with previous reports, which indicated that PspA can interact with PspF in all its conformational states during transcriptional activation: a PspA-F complex still binds to σ54, and PspA interacts stably with ADP-AlF₃-trapped PspF-σ54 complexes (Joly et al., 2009) that are thought to mimic the transcription activating state of PspF (Chaney et al., 2001; Burrows et al., 2010).

PspA-dependent modulation of PspF could be employed in two ways: Either to ensure a controlled low-level psp production under non-stress, or to serve as a second mode of stress-dependent induction. The activity of psp in the exponential growth phase (∼1500 copies of PspA;Li et al., 2014, Valgepea et al., 2013) has been so far attributed to the presence of slight membrane stresses (Jovanovic et al., 2014), but our data allow another interpretation: The basal ATPase level of the saturated PspA·F complex indicates that PspA-dependent PspF activity might be kept at a controlled basal level by bound PspA. Our R59E variant indeed indicates that psp could be more repressed in vivo than it actually is by bound wild-type PspA, and the long half-life might prevent the complex from sensing varying PspA levels via PspA dissociation under non-stress conditions. A tightly controlled basal induction of psp might therefore be advantageous for the cell to keep the Psp system in check, and could explain why the PspA-dependent regulation of PspF does not interfere with PspF oligomerization or σ54 interaction (Joly et al., 2009). Alternatively, modulation of PspF could also add a second layer of psp induction that may be achieved by slight conformational changes upon stress signals, which would enable a rapid and fine-tuned stress response. While strong induction of psp undoubtedly relies on the dissociation of PspA, as clearly observed for secretin stress (Yamaguchi et al., 2013), it will be interesting to see how the PspA-PspF interaction changes under other stresses where psp is comparably slightly induced, e.g. salt stress (Weber et al., 2006), and if a modulatory action of bound PspA could play a role there. Hence, although we found strong evidences suggesting a modulatory regulation of PspF by PspA, it is unclear at this point how relevant these effects are under different conditions in vivo. Most importantly, with the current level of molecular understanding, we do not know whether the variants of PspA that we produced mimic actual states in the cycle of PspF regulation or not. We also cannot exclude that, although unlikely in our opinion, the tendency of PspA-E37A to form inclusion bodies might have indirect effects on the Psp system. We see however a strong interaction of the variant with PspF in the cytoplasm of E. coli as well as clear binding, a modulation of PspF-ATPase activity and no sign of aggregation or inactivity in vitro, suggesting that the inclusion body formation does not interfere with assessment of PspF inhibition in our experimental setup.

While being an insulated occurrence in bEBP regulation, we found that PspA-F system shares several structural and mechanistic features with ClpB. It is interesting to note that the typical regulation of bEBPs happens at the level of hexamerization: Regulatory domains act exclusively on the assembly state of the AAA+ ATPase, allowing formation of an active oligomeric bEBP only in the presence of an inducing signal (Doucleff et al., 2005; De Carlo et al., 2006). PspF, however, is active per default (Jovanovic et al., 1996), and regulated by PspA in a post-assembly mechanism (Elderkin et al., 2002). While PspA-F therefore differs from canonical bEBP regulation, our studies reveal that a structurally similar regulator can be found in members of the ClpB family of AAA+ proteins, where the middle domain (ClpB-MD), a coiled-coil resembling PspA (Fig. 3), regulates the activity of the protein. From a strictly physiologic perspective, ClpB and PspA-F have completely different roles: One is a disaggregase, responsible for unfolding of misfolded proteins under stress conditions (Woo et al., 1992), the other is involved in the regulation of gene expression (Jovanovic et al., 1996). Also, ClpB’s middle domain is fused to the AAA+ domain, while in PspA-F, PspA acts in trans. Their common feature is the hexameric AAA+ core that provides the driving force behind both protein functions. We found several similarities: PspA-F and ClpB have the same stoichiometry (6:6), and both show a basal ATPase activity (Seyffer et al., 2012, this study). Our simulations of the PspA-F complex also hints toward a possible interaction of PspA with two protomers of PspF (Fig. S6), which is a feature of ClpB, where the middle domain likely interacts with two neighboring subunits (Oguchi et al., 2012). Additionally, helix 3 of ClpB-MD and its counterpart on PspA, the N-terminal part of CC1, contain residues crucial for the regulation of the AAA+-domain (e.g. Y503A in ClpB, Oguchi et al., 2012; E37A in PspA, this study), indicating at least partial structural overlap of regions of AAA+ interaction. Nevertheless, this does not mean that both system are regulated in exactly the same way, as ATPase activity in both systems...
is harnessed for two different tasks: ClpB pulls aggregated peptides apart using repeated ATPase cycles (Lum et al., 2004), while PspF, as discussed earlier, adds an energy barrier to a process that does not need energy per se, allowing for highly specific induction. As a consequence, we note that the effects of amino acid variants on ATP hydrolysis are different and seem to be stronger in ClpB than in PspA·F (PspA E37A; ATPase activity 30 % down, psp levels ~20-fold up), but translate into comparably weaker effects on physiologic activity (e.g. ClpB K476C; ATPase 15-fold up, disaggregase activity ~3-fold up, Oguchi et al., 2012). Future studies will shed more light on the molecular mechanism of PspF regulation, and the crystal structure of the PspA·F complex, followed by a thorough mutational study of the PspA–PspF interface, is certainly needed to reach the level of understanding that exists for middle domain-dependent ClpB regulation (see Haslberger et al., 2007, Mogk et al., 2003, Oguchi et al., 2012, Schirmer et al., 2004).

At last, it remains to be seen whether this general regulatory mechanism is used by other, less well-characterized AAA+ proteins as well, and how the mechanism has adapted to its respective task. Although different in certain aspects, the similarities of ClpB and PspA·F show that a coiled-coil domain, either covalently fused to the AAA+ domain or non-covalently bound, can act as a regulator of diverse AAA+ proteins. A tempting, but speculative question that remains is, why a member of the conserved PspA/IM30 family ‘hijacked’ a BEBP for its own regulation in the proteobacterial system: Did the conserved PspA/IM30 family coincidentally happen to have a structure that made BEBP-dependent regulation of its own production in proteobacteria possible, even though the structure evolved for a physiologically different reason, such as membrane stabilization? Or did the PspA/IM30 family per se (co-)evolve as regulators of the ubiquitous AAA+ domain, which in turn allowed PspA in proteobacteria to regulate its own production?

While we hope to have laid the foundations for a more detailed understanding of the PspA/IM30 protein family in general, and the intricate regulatory features of the proteobacterial PspA·F complex in particular, many features concerning the action of PspA/IM30 remain obscure. Twenty-five years after its first description, there is still much to discover in the field of PspA.

Experimental procedures

Strains and cultivation

For all protein preparations, E. coli strain BW25113 (Datsenko and Wanner, 2000) with indicated plasmids was used. The strain MC3 (Bergler et al., 1994), a derivative of E. coli MC4100 (Casadaban, 1976) harboring a pspA promoter fused to lacZ integrated into the λattachment site, was used to investigate changes in WT psp level via LacZ-activity assays. Prior to first use, the arabinose-resistance of this strain was assured via plating on LB containing 1 % (w/v) arabinose. The same clone was used for all further transformations and transductions to ensure that observed differences in psp induction were not a result of different intracellular arabinose levels in the tested strains (Lindenstrauss et al., 2010). Its derivative MC3 ΔpspA::kan was constructed via P1-phage transduction (Thomason et al., 2007) of MC3 using the ΔpspA::kan containing JW1297 from the Keio collection (Baba et al., 2006). MC3 ΔpspF::kan was obtained similarly, using JW1296. All cultures were grown while shaking at 37°C in LB medium (1% (w/v) tryptone, 1% (w/v) NaCl, 0.5% (w/v) yeast extract) if not otherwise specified and supplemented with ampicillin (100 μg ml⁻¹) where appropriate.

Genetic methods and plasmids

The fragment of pspA coding for PspA₁₋₁₄₄ was cloned using the respective primers (Table S1) and chromosomal DNA as template. The primers contained restriction sites (5'-NcoI; 3'-XhoI) for cloning into the pBAD-pspA-H₆ plasmid previously constructed (Standar et al., 2008), leading to a short leucine-glutamate linker in front of the C-terminal hexahistidine tag. Site-directed mutagenesis based on the QuikChange protocol (Agilent, Waldbronn, Germany) was performed to exchange bases in pBAD-pspA-H₆. Primer pairs and the resulting change on amino acid level are given in Table S1 (’pspA-ex’). To allow easier molecular access to the region coding for the PspF-binding patch, a BspHI restriction site was introduced by a silent mutagenesis at base pairs 92–98 of pspA (coding for amino acids Leu31 to Ile33) resulting in pBAD-pspA-H₆+BspHI. This plasmid was then used for several base exchanges that were coded in a primer overhang and cloned into the plasmid using either NcoI/BspHI or BspHI/XhoI respectively (Tab. S1, ‘pspA-BspHI’). For cloning of pspF₁₋₂₆₅ into pBW22 (Wilms et al., 2001), pspF₁₋₂₆₅ was amplified using chromosomal DNA as template. Primers contained restriction sites (5'-NdeI; 3'-BamHI). For construction of the pSC101-based constitutive low-copy expression system pUL-tat, the Pmar promoter-containing NdeI/XbaI fragment of pCHAP18 (Posset et al., 1992) has been removed by excision, Klenow treatment and religation, and a 436 bp fragment containing the constitutive E. coli tatA promoter with an engineered NdeI site at the tatA start codon has been amplified using pABS-tatABC (Berthelmann and Brüser, 2004) as template, and ligated into the PstI/HindIII sites of the vector. The coding region of E. coli pspF was then cloned into pUL-tat (Tab. S1) using NdeI/HindIII. All plasmid constructs were verified by DNA sequencing.

Biochemical methods

Standard protein purification. Overnight cultures were diluted to an OD of 0.05. After induction with 0.1 % (w/v) arabinose (or rhamnose in case of pBW-pspF₁₋₂₆₅-H₆) and further growth for 3 h, cells were centrifuged at 6000 × g (4°C) and pellets stored at −18°C. Cells were suspended in 20 mM Tris/HCl, 100 mM NaCl and 20 mM imidazole (pH 8.0) and disrupted by two French Press passages at 138 MPa.
and 4°C. Afterwards, cell debris was removed using low-speed centrifugation at 6000 × g (20 min, 4°C), and membranes and soluble fractions were further separated using ultracentrifugation (Beckman Optima L-80 XP, Beckman Coulter, Krefeld, Germany, 140 000 × g, 1 h, 4°C). Protein was taken exclusively from the soluble fraction and purified via Ni-NTA agarose resin (Qiagen, Hilden, Germany) using standard Ni-affinity protocols. Samples were further purified by anion exchange (Resource Q, GE Healthcare, Freiburg, Germany, linear gradient from 0 to 1 M NaCl in 20 mM Tris/HCl pH 8.0) resulting in pure protein as controlled via Coomassie Brilliant Blue stained SDS-PAGE gels and SEC. For long-term storage, the ionic strength was readjusted to 100 mM NaCl with HiTrap desalting columns (GE Healthcare, Freiburg, Germany) and protein was concentrated by ultrafiltration (Vivaspin 10 000 MWCO, Sartorius Stedim, Goettingen, Germany). Because of the high stability of PspA1–144 and PspF1–265, proteins could be stored at −80°C in 20 mM Tris/HCl and 100 mM NaCl without additives and behaved like freshly prepared samples in all assays (ATPase activity, AUC, SEC) after thawing. All protein concentrations were calculated via their extinction coefficient and absorption at 280 nm. To assess and compare the subcellular localization of PspA, PspA1–144, and its variants, the pellet of low-speed (cell debris) and ultracentrifugation were resuspended in a buffer volume equal to the supernatant, and aliquots were analyzed via SDS-PAGE/Western blotting, using polyclonal anti-PspA antibodies (Standar et al., 2008), anti-DnaK, anti-YidC or monoclonal anti-His-tag antibodies (Qiagen, diluted 1:5000) and the corresponding secondary antibodies coupled to horse radish peroxidase for enhanced chemoluminescence (ECL) detection. All steps of the localization experiments shown in Fig. 1C and Fig. 4C were performed simultaneously. For co-elution experiments, Ni-affinity purifications from the cytoplasmic fraction of cell cultures were performed as described earlier. After Western blotting, his-tagged PspA (or its fragments and variants) and strep-tagged PspF were detected in the samples using monoclonal anti-StrepTag II (EMD Millipore, Billerica, USA) and His-probe (Santa Cruz Biotechnology, Dallas, USA) antibodies and detected using the respective goat secondary antibodies (IrDye 800CW and 680LT) and the Odyssey system (Li-Cor, Lincoln, USA).

Purification of selenomethionine labeled PspA1–144 (Se-PspA). Se-PspA-producing cells were grown in minimal medium M9 (Sambrook and Russell, 2001) with 0.4 % (v/v) glucose as carbon source and 0.1 % (v/v) SL12 trace element solution (Overmann et al., 1992). Incorporation of selenomethionine (Acros Organics, now Thermo Fisher Scientific, Geel, Belgium) was assisted by suppression of methionine biosynthesis (Van Duyne et al., 1993) 15 min prior to induction. Purification of Se-PspA was performed similar to that of unlabeled protein, except that 5 mM 2-mercaptoethanol was added throughout all purification steps and in the storage buffer to keep Se-PspA in a reduced state.

Crystallization, data collection and structure determination of PspA1–144. Purified PspA1–144 in 10 mM Tris/HCl buffer (pH 8.0) and 50 mM NaCl at a final concentration of up to 9 mg ml⁻¹ was used for crystallization by the vapor diffusion hanging drop method. 1 μl PspA1–144 was mixed with an equal volume of crystallization buffer containing 0.1 M HEPES/NaOH (pH 7.5), 10 % (w/v) polyethylene glycol 6000 and 5 % (v/v) 2-methyl-2,4-pentanediol and incubated at 15°C. Final high resolution diffracting crystals where obtained by macro-seeding of initial PspA1–144 crystals at a protein concentration of 2 mg ml⁻¹ using a refined crystallization buffer containing 0.1 M HEPES/NaOH (pH 7.2), 10 % (w/v) polyethylene glycol 6000 and 5 % (v/v) 2-methyl-2,4-pentanediol. Se-PspA1–144 in 10 mM Tris/HCl buffer (pH 7.5), 50 mM NaCl and 5 mM 2-mercaptoethanol was crystallized in the same manner, but using native PspA1–144 crystals for cross-seeding. Crystals of both native and Se-containing PspA1–144 appeared after 3 days and reached their final size within 1 week. Prior to flash-freezing, the crystals were cryo-protected by addition of 15 % (v/v) (R,R)-(−)-2,3-butanediol (Merck Millipore, Darmstadt, Germany) to the mother liquid. Collection of the native and the three MAD datasets was carried out under cryogenic conditions (100 K) at the BESSY synchrotron beamline 14.1 (Helmholtz Zentrum, Berlin, Germany) and processed with the XDS package (Kabsch, 2010) (see Table S2 for statistics). Phase determination was carried out by multiple wavelength anomalous dispersion (MAD) using the Se-PspA1–144 datasets. The heavy atom substructure (four selenium sites) was determined and refined using SHELX (Sheldrick, 2008) and SHARP followed by density modification using SOLOMON within the autoSHARP pipeline (Vonrhein et al., 2007). The resulting electron density map was of sufficient quality to allow automated tracing and model building using the programs ARP/wARP (Langer et al., 2008) and BUCCANEER from the CCP4 suite (Winn et al., 2011). The generated model was subjected to further cycles of manual building and refinement employing the programs COOT (Emsley et al., 2010) and Refmac5 (Murshudov et al., 1997) using the highest resolution (1.8 Å) native dataset and Translation/Libration/Screw (TLS) refinement for final refinement cycles. The final structure model of PspA covers residues Ile3 to Glu20 and Asp24 to Arg142, remaining residues were not visible in the electron density. Residues Asn12 to Leu31 show significantly higher conformational diversity than the rest of the structure as reflected by higher B-factors and poorly defined electron density in this region. It is assumed that the less ordered regions in the PspA structure are also the origin of the structural refinement converging at slightly higher R-factors (see Table S2). The structure was validated using Molprobity (Chen et al., 2010) and deposited at the Protein Data Bank (PDB) under the accession ID 4WHE.

LacZ-activity assays. Activity of psp reporters in different strains was assessed using the classic activity assay by Miller (Miller, 1972). Generally, all overnight cultures were diluted to an OD of 0.05 and allowed to grow for 3 more hours (induced with 0.1 % arabinose) before LacZ-activity was assessed. Where indicated (‘18 h’), prolonged induction was used to discriminate between psp inhibiting and psp-inducing fragments of PspA. Only in those assays, media for overnight cultures already contained 0.1 % (w/v) arabinose to induce production of psp regulating fragments from pBAD vectors. All measurement were done in triplicate (error bars in figures correspond to one standard deviation). Where indicated, intrinsic controls [at least a pBAD22 empty vector control (Guzman et al., 1995) and a PspA1–144 producing strain] were used for normalization to ensure comparability.
ATPase assays. Measurements were performed in assay buffer containing 20 mM Tris/HCl, 100 mM NaCl and 10 mM MgCl₂ at pH 8.0 in triplicate. As PspA stabilizes PspF hexamers and the PspA–PspF interaction was found to be extremely stable, care was taken to ensure that PspF₁₋₁₄₄ was equilibrated at nearly the final concentration for 1 h prior to addition of PspA at the indicated final concentrations from concentrated stock solutions. Following another 15 min of preincubation at 30°C, the assay was started by the addition of 2 mM ATP (final concentration) and samples were taken at the indicated time points. The amount of accumulated phosphate released during ATP hydrolysis was subsequently measured using a colorimetric assay (Lanzetta et al., 1997), modified as described (Turgay et al., 1997). In all cases, negative controls without PspF were carried along to subtract the generally very low background effects. For jump dilution experiments, PspA₁₋₁₄₄ (30 μM) and PspF₁₋₂₆₅ (20 μM) were preincubated for 60 min and the assay was started by diluting the sample 1:40 into assay buffer already containing 2 mM ATP. Samples were taken at the indicated time points. Samples containing 0.5 μM PspF and 0.75 μM PspA were prepared as described earlier and equilibrated for 60 min before starting the measurement. Their ATP hydrolysis rate (triplicate) was determined to be 0.1387 μM s⁻¹ and served as a reference. The k₉₀₀ was subsequently estimated numerically with the nls algorithm of R(200 000 iterations) using the reference hydrolysis rate and the data obtained for the jump diluted sample (Copeland et al., 2011). With dissociation being a first-order reaction, the half-life of the complex could then be calculated as \(t_{1/2} = \frac{k_{off}}{k_{on}} \) (Tummino and Copeland, 2008).

Size exclusion chromatography. SEC (ÄKTA Explorer, GE Healthcare) was used to investigate complex formation of PspA₁₋₁₄₄ and PspF₁₋₂₆₅. Proteins (PspF₁₋₂₆₅ at 130 μM, PspA₁₋₁₄₄ at 210 μM) were preincubated at indicated molar ratios for 10 min at 4°C, 1 μM of ATP (Carl Roth, Karlsruhe, Germany) or AMPPNP (Sigma-Aldrich, Taufkirchen, Germany) and 10 mM MgCl₂ were added where indicated. A 100 μL aliquot of the sample was then applied to a Superose 6 10/300 GL column (GE Healthcare) equilibrated with 20 mM Tris/HCl and 100 mM NaCl adjusted to pH 8.0 at a flow rate of 0.5 ml min⁻¹ and 4°C. Elution profiles were obtained measuring the absorbance of the effluent at 230 nm.

AUC. All measurements were performed in 20 mM Tris, pH 8, 100 mM NaCl at 20°C using an Optima XL-A centrifuge (Beckman, Palo Alto, CA, USA), an An50Ti rotor, and double-sector cells. Depending on protein concentration and addition of cofactors, e.g. ADP, the distribution of the protein in the cell was monitored at 230, 260, 280 or 300 nm. Data were analyzed using the software SedFit (Schuck, 2000). Isolated PspA₁₋₁₄₄ was investigated at concentrations of 3, 10, and 30 μM. Sedimentation velocity measurements were made at 40 000 r.p.m. for 4 h, sedimentation equilibrium was performed at 14 000 r.p.m. Sedimentation of PspF was measured at concentrations of 1–30 μM at 40 000 r.p.m. (velocity run) and 14 000 or 5000 r.p.m. (sedimentation equilibrium). Complex formation of PspF with PspA₁₋₁₄₄ was determined at initial concentrations of PspF of 1, 10 and 30 μM, respectively by titration of PspA₁₋₁₄₄ to maximal 60 μM. Sedimentation velocity of the complex was measured at 40 000 r.p.m., sedimentation equilibrium at 5000 r.p.m.

In silico methods

Coiled-coil prediction. Coiled-coil predictions for PspA (Uniprot accession: P0AFM6) were performed using the COILS algorithm (Lupas et al., 1991) with a prediction frame of 21 amino acids for most accurate identification of coiled-coil ends (according to the COILS/PCOILS manual, see also Gruber et al., 2006) and MTIDK matrix. The window size of 21 amino acids also increases the prediction accuracy relative to smaller window sizes, yet it can be assumed to be sufficiently small to not decrease the resolution of the prediction (Gruber et al., 2006). Results were similar whether weighting was enabled or disabled and did not change significantly using an aligned input sequence (PCOILS algorithm).

Consensus sequences. Sequences of γ-proteobacterial members of PspA/IM30 were obtained from the Pfam database (Punta et al., 2012). Clearly too short sequences lacking larger parts of the primary sequence were discarded, yielding 715 sequences. Redundancies were reduced to prevent over-representations and the consensus logo histogram was calculated using Jalview (Waterhouse et al., 2009). The overall PspA/IM30 consensus was similarly prepared using the Pfam RP35 representative proteome sequences of the PspA/IM30 family (165 sequences from all phyla). In all consensus histograms, a score of 0 indicates no conservation at this position, 100 indicates full conservation in all proteins.

Structure comparison and modelling. A DALI (Holm et al., 2008) search was performed with the PspA structure (PDB-ID 4WHE). For subsequent detailed comparison of ClpB and PspA coiled-coil structures, backbones of the coiled-coil forming protein moieties (ClpB399–513, PDB-ID 4HSE; PspA₂₇–₁₄₁, PDB-ID 4WHE) were superimposed in the Swiss-PdbViewer (Guex and Peitsch, 1997) using ‘magic fit’ and ‘explore fragment alternative fit’ algorithms, as primary sequence alignment failed because of the difference in domain order in PspA and ClpB (see Fig. 3C). The highest scoring fit had an r.m.s.d. of 1.10 Å for 284 overlapping backbone atoms with an overall score of 68. This fit was used for all subsequent comparisons and simulations. Missing loops of PspF (PDB-ID 2BJW) and PspA (PDB-ID 4WHE) were modelled with COOT (Emsley et al., 2010). For oligomeric complex prediction of PspA-F, the hexameric oligomer of PspF was constructed using GalaxyGemini (Lee et al., 2013) with subsequent energy minimization. ClpB was then fitted into the PspF hexamer with Pymol (Schrodinger, 2010) using only the AAA+–domain of ClpB (PDB-ID 4HSE) for superimposition. PspA was then fitted into the M-domain of the previously aligned ClpB to obtain a model for the fully saturated PspA-F complex.

Simulations. The atomistic molecular simulations of PspA-F complexes were performed with Gromacs (Hess et al., 2008) (version 4.6) using the AMBER99SB-ILDN force field.
Bergler, H., Abraham, D., Aschauer, H., and Turnowsky, F. (2010) with the TIP4P water model. Virtual sites were used to allow the usage of a larger integration time step (0.003 fs). The Particle Mesh Ewald method was used to calculate electrostatic interactions. A simulation box was fitted around the protein complex consisting of 6 PspA and 6 PspF, which allowed 2 nm distance from the periodic boundaries. The temperature in the simulations was coupled to an external heat bath of 303 K using the velocity rescale method ($\tau_{\text{t}} = 0.1$ ps). The external pressure was coupled to 1 bar using the Berendsen barostat (compressibility $\tau_{\text{p}} = 1$ ps). Four independent simulations were performed for PspA-F complexes either based on ClpB-like M-domain orientation (18 ns of simulated time) or with various uprift orientations of PspA at the PspF hexamer surface for a simulated time of 129–145 ns (138 ns on average).

Acknowledgements

We would like to thank Sybille Traupe and Inge Reupke for preparation of strains and plasmids used in this study, Michael Ringel for help with programming and Uwe Müller (Freie Universität Berlin at BESSY) for synchrotron time. We would furthermore like to thank Kürşad Turgay, Noël Molière and Carol Gross for discussions and critical reading of the manuscript. This work was supported by the German Research Foundation (DFG grant BR2285/4-1).

Author contributions

HO and TB designed the experiments, MS did the crystallization and MS, CP, and MTS solved the structure of PspA, EH and DM contributed localization data and part of the activity data, HL did AUC analyses, HJR and HG contributed MD simulations, HO performed all other experiments, HO, HL, MTS, and TB evaluated the data and HO, MTS, and TB wrote the article.

Conflict of interest

The authors declare that they have no conflict of interest.

References

Supporting information

Additional supporting information may be found in the online version of this article at the publisher’s web-site.