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ABSTRACT

Speech perception involves prediction, but how is that prediction implemented? In cognitive
models prediction has often been taken to imply that there is feedback of activation from lexical
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to pre-lexical processes as implemented in interactive-activation models (IAMs). We show that

simple activation feedback does not actually improve speech recognition. However, other forms
of feedback can be beneficial. In particular, feedback can enable the listener to adapt to
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changing input, and can potentially help the listener to recognise unusual input, or recognise prediction
speech in the presence of competing sounds. The common feature of these helpful forms of
feedback is that they are all ways of optimising the performance of speech recognition using
Bayesian inference. That is, listeners make predictions about speech because speech recognition

is optimal in the sense captured in Bayesian models.

Perception involves prediction. In speech perception
this claim is neither novel nor contentious; it has long
been known that listeners are sensitive, for example,
to the frequency of occurrence of individual words
(Howes, 1957; Pollack, Rubenstein, & Decker, 1959). A
word'’s frequency represents its prior probability and
hence constitutes a prediction as to how likely the
word is to appear in linguistic experience. Frequency-
based predictions about words can even influence the
identification of speech sounds: An ambiguous sound
is more likely to be reported as forming a higher fre-
quency word (e.g. more “best” responses to ambiguous
steps on a “best-pest” continuum; Connine, Titone, &
Wang, 1993). At the lexical level, listeners given suffi-
ciently constraining context can accurately predict
upcoming words in a sentence. The sentence fragment
“The cat sat on the ... ” will lead most listeners to predict
that the next upcoming word is “mat”. Such predictions
can also influence the listener’s processing of following
words. For example, if the fragment “She needs hot
water for the ... " is completed by a word that is ambig-
uous between “bath” and “path”, listeners will be more
likely to report the word as “bath” than after hearing
“She liked to jog along the...” (Miller, Green, & Scher-
mer, 1984; see also Connine, 1987).

Listeners appear to be able to make predictions about
the phonological form of spoken words on the basis not
only of knowledge about frequency of occurrence (e.g.
that “best” occurs more often than “pest”) and concep-
tual knowledge (e.g. about bathing and jogging), but
also on the basis of a variety of other sources of knowl-
edge. These range from knowledge about the vowel
inventory of a speaker of a particular dialect (Brunelliere
& Soto-Faraco, 2013), through to lexical knowledge pre-
dicting the later sounds within words (Gagnepain,
Henson, & Davis, 2012), to knowledge about the the-
matic constraints of verbs (Dahan & Tanenhaus, 2004).
Form-based predictions about incoming speech are
made on the basis of many and varying types of infor-
mation, including syntax (Magnuson, Tanenhaus, &
Aslin, 2008; Van Alphen & McQueen, 2001), prosody
(Cutler, 1976), transitional probability (Pitt & McQueen,
1998), and visual cues (Van Wassenhove, Grant, &
Poeppel, 2005). Listeners can also use many types of con-
straints — semantic, syntactic, and pragmatic - to antici-
pate upcoming words (e.g. Altmann & Kamide, 1999;
Arai & Keller, 2013; Brouwer, Mitterer, & Huettig, 2013;
Chambers, Tanenhaus, Eberhard, Filip, & Carlson, 2002;
Kamide, Scheepers, & Altmann, 2003; Van Berkum,
Brown, Zwitserlood, Kooijman, & Hagoort, 2005).
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The critical question to ask, therefore, is not whether
listeners make predictions, but exactly how and when
those predictions influence perception. The answer to
this question, we suggest, is that predictions in
speech recognition are based on Bayesian inference
(Norris & McQueen, 2008). We make the case that the
reason listeners make predictions about speech
follows from the assumption that they are Bayesian
ideal observers, and hence also that they make predic-
tions only to the extent that those predictions help
speech perception.

In the literature on speech recognition this question
has largely been addressed in the context of a debate
contrasting models in which there is feedback of infor-
mation from higher to lower levels (as instantiated inter
alia in the TRACE model; McClelland & Elman, 1986),
against models without this kind of feedback (e.g. the
Bayesian Shortlist B model; Norris & McQueen, 2008).
Simply put, in the former class of model predictions influ-
ence perception through activation feedback from
higher processing levels to logically prior processing
levels, but in the latter class of models no such reverse
information flow is possible and yet predictions can
still be made. In what follows, we argue that there are
both theoretical and empirical arguments which
suggest that perceptual predictions about speech do
not require activation feedback; that is, that prediction
does not imply this kind of feedback. We then discuss
suggested frameworks for how Bayesian prediction
might operate, including generative models (such as
the analysis-by-synthesis model of Halle & Stevens,
1959, 1962) and predictive coding (e.g. Rao & Ballard,
1999). We conclude that, if insights from the debate
about feedback are brought to bear, such frameworks
have the potential to drive new developments in the
cognitive modelling of speech perception, and to
advance understanding of the way listeners make pre-
dictions about speech.

1. Definitions
1.1. What is a prediction?

Given our argument that speech perception is Bayesian,
it should come as no surprise that our definition of pre-
diction is Bayesian too. A prediction is a belief about
the state of the world. That belief may be that grass is
green, or that the next word in this sentence will be
“cat”. But it need not be a prediction of a specific event
or outcome. The prediction might also be a probability
distribution over a range of possible outcomes, as in
the case of word frequency. Other things being equal,
we should predict that words will appear with
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probabilities given by their frequency of occurrence in
the language.

p(Evidence|Word;) x P(Word;)
/=1 p(Evidence|Word;) x P(Word))’
M

P(Word;|Evidence) =

But word frequency provides a very weak set of priors.
Sentential context such as “He ate a...” can provide
much more constraint (though still not isolate a single
word), while “The cat sat on the...” may generate a
very high prior for “mat”. In Bayesian terms, however,
all that is happening in all these cases is that the priors
are becoming more peaked around the most likely
word or words; all of these cases are predictions. This
Bayesian notion of prediction is thus more general
than any more informal notion of prediction such as
making a single forecast about a specific outcome (e.g.
which word will come next). Importantly, predictions or
beliefs should not be fixed; when the world changes, pre-
dictions should change too. Bayes’ theorem, as applied
to word recognition in Equation (1), shows how to do
this. It provides a formal procedure for updating beliefs
in the light of new evidence, and hence accommodating
to a changing world. In Bayesian terms it tells us how to
turn a prior probability (P(Word)) into a posterior prob-
ability (P(Word|Evidence)). p(EvidenceWord), in turn, is
the likelihood of the presented evidence, if what is
being presented is this word.

Bayes' theorem thus shows how to properly update a
model of the world as new perceptual data arrive.
Indeed, a case can be made that the primary function
of perception is to construct the best possible model of
the world. A model of the world necessarily contains
implicit predictions. If, in your model of the world, walls
are harder than people, this leads to the prediction
that in a collision between a wall and a person, the
person will probably come off second best. But if you
enter a Japanese house where the walls are made of
paper, this belief must be updated; the wall will probably
suffer the most damage. Belief updating is yet more
important when moving from houses with paper walls
to houses with hard walls.

It is important, particularly in the context of this
special issue, to distinguish this Bayesian definition of
prediction, in which predictions about words during
speech recognition are based on their prior probabilities,
from other definitions. As already noted, Bayesian predic-
tions need not concern specific outcomes: multiple
words can become more probable at the same time.
Also, on the Bayesian account, predictive processing is
not limited to situations where anticipatory behaviour



Downloaded by [Max Planck Institut Fur Psycholinguistik] at 03:28 29 December 2015

6 D. NORRIS ET AL.

is observed. Predictions about a given word can have
consequences for behaviour in advance of any percep-
tual evidence about that word (e.g. anticipatory fixations
to the referent of a spoken word with a high prior prob-
ability; Altmann & Kamide, 1999), but predictions are also
playing a role if priors influence behaviour only when the
word is being heard (e.g. speeding up of lexical decisions
to higher frequency words; Luce & Pisoni, 1998).

1.2. What is activation feedback?

Activation feedback can best be defined by reference to
the TRACE model. TRACE was derived from the IAM of
visual word recognition (Rumelhart & McClelland,
1982), and based on the same connectionist principles.
In TRACE there are three layers of nodes representing
phonetic features, phonemes, and words. Activation
necessarily flows from the features to the phoneme
layer and on to the word layer. However, nodes repre-
senting words also have top-down connections to the
phoneme nodes. Activation of phoneme nodes activates
corresponding word nodes and these in turn pass acti-
vation back down the network to the phoneme nodes.
In this way, lexical context alters the activation of the
nodes responsible for phoneme identification online
(i.e. as the input is being processed). At the phoneme
level, feedback from the lexical level thus causes acti-
vation to build up faster in phonemes in words than in
phonemes in nonwords. To distinguish it from other
forms of feedback (including feedback for learning, feed-
back for attentional control and feedback for binding;
see Section 3.4), we refer to the feedback in TRACE as
activation feedback.

Activation feedback provides a simple account of how
lexical context can influence phoneme identification. For
example, ambiguous phonemes tend to be identified so
as to form words rather than non-words (the “Ganong
effect”; Ganong, 1980). A phoneme that could be either
/b/ or /p/ is reported as [b] in [?if] (beef-peef), but as [p]
in [?is] (beace-peace). Activation feedback accounts for
this finding by assuming that lexical feedback (from
beef or peace) has activated phonemes consistent with
actual words. Other demonstrations of lexical context
effects in phonemic decision-making, for instance in
phoneme monitoring (Rubin, Turvey, & van Gelder,
1976) and phonemic restoration (Samuel, 1981), can be
accounted for similarly, as can Ganong effects for ambig-
uous sounds in word-final position (more reports of /s/
than of /[/ after [ki], because kiss is a word but kish is
not; McQueen, 1991a) and indeed effects of sentence
context (such as in the bathing/jogging example
above, from Miller et al., 1984).

2. Prediction and Bayesian inference

With these definitions in place, we resume our argument
that prediction in speech recognition is based on Baye-
sian inference, and can be achieved without activation
feedback.

Bayesian models, whether of speech perception (e.g.
Feldman, Griffiths, & Morgan, 2009; Kleinschmidt &
Jaeger, 2015), of spoken-word recognition (e.g. Shortlist
B; Norris & McQueen, 2008) or of visual word recognition
(e.g. the Bayesian Reader; Norris, 2006, 2009; Norris &
Kinoshita, 2012) are examples of ideal observer models
(see Geisler & Kersten, 2002, or Geisler, 2003). Such
models describe how to make optimal decisions given
limited data. Much of the time, after all, our senses
receive quite ambiguous data. Given some stored set of
stimulus categories (e.g. phonemes, words, or letters)
and some such noisy stimulus, the best any perceptual
system can possibly then do is to match the input
against the stored category representations and select
the category that provides the best fit; that is, the category
with the highest posterior probability given the input.

Consider the case of visual word recognition operat-
ing on a fixed set of letters of known form. (As will be dis-
cussed in Section 4.1, the assumption of a fixed set of
items is crucial.) Assume for the moment that all letters
are equally common. Faced with some degraded rep-
resentation of a letter, the best a perceptual system
can possibly do is to match the input against the
stored letter representations and select the letter that
matches best (a formal derivation of this can be found
in Appendix A of Pelli, Burns, Farell, & Moore-Page,
2006). But what if the letters form words, and those
words appear with different frequencies? The words
plus their frequencies constitute a prediction as to
which letters are expected. The optimal decision pro-
cedure is given by a Bayesian ideal observer (again see
Pelli et al., 2006, for derivation). This procedure takes
words and their probabilities into account, but does
not need to involve activation feedback from a lexical
level of representation to some earlier level of letter
analysis.

For phonetic categorisation, this optimal Bayesian
procedure has been instantiated by Norris and
McQueen (2008) in their Merge B model. In Merge B, per-
ceptual evidence is combined with lexical knowledge
(probabilities or predictions) to compute the posterior
probability of phonemes given the evidence. But lexical
knowledge has no influence on the operation of the per-
ceptual processes that deliver that evidence. According
to Bayes' theorem (see Equation (1)), the likelihoods
(i.e. the evidence) are kept separate from the priors;
only the posterior probability is computed. Adding
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activation feedback could not possibly improve perform-
ance of the ideal observer; by definition, the observer is
already ideal. (Indeed, as will be discussed later, acti-
vation feedback could well make performance worse;
as it were, the priors could distort the likelihoods).

For spoken-word recognition, Shortlist B (Norris &
McQueen, 2008) is likewise based on the assumption
that listeners use Bayesian inference and hence act as
ideal observers. The model is inherently predictive as it
uses the prior probability of words, combined with
their likelihood, to compute their posterior probability
(Equation (1)). Shortlist B has no activation feedback,
since that cannot improve on ideal listener performance.
No model can outperform one which instantiates Bayes'
theorem.

Shortlist B offers a ready explanation of frequency
effects in spoken-word recognition. The lexical priors in
the model reflect the frequency of occurrence of
words, and simulations show that the model fits the rel-
evant empirical data (Norris & McQueen, 2008). A striking
feature of these simulations is that they require very few
parameters: many aspects of the model’s performance
derive from the core assumption of Bayesian inference.
Frequency biases in Shortlist B are just one form of pre-
dictive processing. What counts is not frequency itself,
but priors. A more complete account would replace fre-
quency with an estimate of the prior probability of
words appearing in particular syntactic or semantic con-
texts. Frequency and context effects have the same
explanation in a Bayesian model.

Discussions of prediction often take it as self-evident
that prediction will improve perception. But, as Bayesian
models capture, simply making predictions is not
enough; those predictions have to be used in the right
way, and that means drawing the appropriate inferences
from them. Prediction should be Bayesian because in this
way perception is indeed improved.

3. Prediction and activation feedback

In cognitive models of recent years, however, the domi-
nant view has not been Bayesian, but has been, rather,
that the benefits of prediction can be achieved by acti-
vation feedback. TRACE is the standard-bearer of this
proposal. It is a flagship model, being both the first to
have instantiated the dynamic inter-word competition
that is essential for recognising words (due to the struc-
ture of vocabularies: McQueen, Cutler, Briscoe, & Norris,
1995), and also the only computational model of this
type that has been implemented such that it can simu-
late a wide range of behavioural data on speech recog-
nition. In TRACE, activation feedback is in fact the
mechanism underlying all contextual effects; knowledge

LANGUAGE, COGNITION AND NEUROSCIENCE . 7

at a higher level of processing feeds back to affect acti-
vation of units at a lower level of processing. In IAMs,
the output of one cognitive process feeds back to a logi-
cally prior cognitive process and, crucially, alters online
the computations performed within that prior process.
Thus the feedback connections in TRACE make it poss-
ible for contextual information to influence the percep-
tion of speech sounds.

Is this kind of information flow evidentially warranted?
Note that this question in turn requires agreement on
what precisely would count as evidence of such flow,
and which levels are involved. The TRACE definition of
feedback as connections from one level allowing infor-
mation flow to a logically prior level excludes, for
example, very general top-down effects such as those
of attention (there appears to be unanimous agreement
that attention can control the engagement of early per-
ceptual processes; the amount of processing resources
allocated to a task may be altered, with no necessary
consequent alteration of the way those computations
are performed). The distinction here resembles Gilbert
and Sigman'’s (2007) contrast of sensory versus behav-
ioural context, where the latter encompasses attentional
top-down control and processes involved in reconfigur-
ing networks to perform different tasks.

At the other extreme, it is quite possible that, in a
theory stated at what Marr (1982) would term “compu-
tational” or “algorithmic” levels of analysis, there might
be no need for feedback between different stages of pro-
cessing, even though the requirement to implement the
processing computations in neural tissue might best be
served by exploiting recurrent connections between
layers of neurons. These implementational details
might be undetectable using behavioural measurement
alone and hence would not be part of a purely psycho-
logical theory. Similarly, an algorithmic account with no
feedback would not need to be altered in the light of evi-
dence of the existence of recurrent neural connections,
so long as those neurons were just part of the implemen-
tation of that algorithm. It is in fact known that there are
extensive recurrent connections in the brain (see, e.g.
Davis & Johnsrude, 2007, for review). These neurobiologi-
cal facts cannot count as evidence of activation feed-
back, however, since it is not yet clear what those
connections actually do.

3.1. Theoretical considerations

Though it is commonly assumed in the activation feed-
back literature that such feedback helps perception,
especially with noisy or degraded input, in fact this
assumption is unwarranted. As we have already dis-
cussed, an ideal observer can operate without activation
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feedback. By definition, adding feedback could not
improve the performance of an already ideal observer.
But adding feedback can actually make performance
worse; it can generate hallucinations. In TRACE, if feed-
back flows down from a word to its constituent pho-
nemes, it will boost the activation of those phonemes.
Those phonemes, in turn, will boost the activation of
the word even more, and so this cycle will continue.
The problem here is that the activation generated by
the input is being reused multiple times, and amplified
each time. If feedback increases the activation of pre-
dicted input then that increased activation will make
the predicted word even more likely. With too much acti-
vation feedback, the model will perceive only its own
predictions. This will be detrimental when there is a mis-
match between those predictions and the acoustic evi-
dence, resulting in a hallucination.

Note, however, that this is not an inherent problem
with the use of activation feedback. McClelland (2013)
has shown how a variant on an interactive-activation
network can be constructed in which lower level nodes
subtract out their own contribution to the feedback
they receive from higher levels. This model retains acti-
vation feedback, but prevents the runaway feedback
that can happen in the original model. The reason this
network avoids the problem of runaway feedback is
that it is constructed to implement Bayes’ theorem.
What this suggests, therefore, is that the way to get acti-
vation feedback to work appropriately is to ensure that it
implements Bayesian prediction. Feedback performing
Bayesian computations may be considered unobjection-
able; however, it is incontrovertibly simpler to perform
those same computations without feedback.

The original IAM had no internal noise. When noise is
added to these models, feedback boosts both signal and
noise equally. Again this means that there is no benefit in
terms of increased sensitivity. Feedback is thus not a
magic ingredient for improving perception. It is worth
noting that the best current automatic speech recog-
nition devices are feed-forward systems (Abdel-Hamid,
Deng, & Yu, 2013; Hinton et al,, 2012). Similarly, state-
of-the-art image recognition uses feed-forward convolu-
tion neural nets (Zhou, Lapedriza, Xiao, Torralba, & Oliva,
2014).

Phoneme identification, considered as a form of multi-
dimensional signal detection in which distributions of
signal and noise overlap, also highlights the limitations
on using feedback. An observer's task would be to
judge whether a particular sample comes from the
signal distribution or the noise distribution. Given that
both distributions are fixed, the only freedom an obser-
ver has is in where to place the decision criterion. The
observer could decide to maximise detection

performance by placing the criterion exactly half way
between the two distributions. If missing a signal were
to be considered very costly, the criterion would be
better placed nearer the noise distribution. In signal
detection terms, observers could alter their bias. But
now imagine that some high-level information indicates
whether the input is signal or noise. If the high-level
information is accurate in this, it could be fed back to
alter placement of the criterion, and performance
would become perfect as a result. The measured sensi-
tivity of the whole system would accordingly increase.
But of course the higher-level process has no need at
all to feed any information back. It already knows the
answer, so altering the processing information in
accord with the answer achieves nothing.

The same principle holds even if the predictions of the
higher level process are not wholly reliable. Low- and
high-level information can be combined at the higher
level stage (as in Merge B; Norris & McQueen, 2008),
and nothing is gained by feeding that information back.

3.2. Behavioural data

Given the force of the theoretical argument that acti-
vation feedback cannot improve perception, it should
come as no surprise that there is no convincing evidence
for this kind of feedback. As Norris, McQueen, and Cutler
(2000) argued, almost all of the behavioural data on
lexical involvement in phonemic decision-making
available at the time of their review was not diagnostic
with respect to activation feedback. Such data include
demonstrations that lexical knowledge can influence
phonemic decision-making across a range of tasks,
including phonetic categorisation (Ganong, 1980) and
phoneme monitoring (Rubin et al., 1976), and in the
phoneme restoration illusion (Samuel, 1981).

The assumption that feedback would help percep-
tion led therefore to a substantial accumulation of evi-
dence that was consistent with the idea of activation
feedback, but did not prove to be diagnostic of it. All
the cited findings are simply explained by purely
feed-forward models such as Merge (Norris et al.,
2000) and its Bayesian successor Merge B (Norris &
McQueen, 2008). In Merge, phonemes can be identified
on the basis of pre-lexical representations and read out
of lexical-level representations. Decisions are based on a
combination of those two sources of information. So
although widely interpreted as evidence for activation
feedback, results such as those of Ganong (1980),
Rubin et al. (1976), and Samuel (1981) warrant far
more restricted inferences.

They suggest that a distinction needs to be made
between process interaction and information interaction.



Downloaded by [Max Planck Institut Fur Psycholinguistik] at 03:28 29 December 2015

The Ganong effect tells us that two different sources of
information (lexical and pre-lexical) are combined in
making a perceptual decision. It tells us about interaction
of information. In itself, these data do not tell us whether
lexical information feeds back down to influence pre-
lexical processing. That is, it does not tell us whether
there is interaction between processes.

3.2.1. So what would count as evidence for
activation feedback?

The kind of evidence that would be diagnostic is evi-
dence that feedback from the lexicon influences the
internal workings of the pre-lexical processor. Elman
and McClelland (1988) attempted to find such evidence.
They examined perceptual compensation for fricative-
stop coarticulation (the tendency for listeners to perceive
ambiguous stops between a [t] and a [k] as [K] after the
fricative [s] but as [t] after the fricative [[I; Mann &
Repp, 1981). This process reflects a perceptual compen-
sation for the acoustic consequences of coarticulating a
stop after a fricative, and is generally considered to
have a pre-lexical locus (for detailed discussion, see
McQueen, Jesse, & Norris, 2009). EIman and McClelland
showed that the compensation effect on ambiguous
stops occurred after ambiguous fricatives placed in lexi-
cally disambiguating contexts (e.g. more [k] responses to
christmals/[] [t/klapes and more [t] responses to fooli[s/[]
[t/Klapes). They argued that this was evidence of lexical
feedback: Fricatives that are filled in by the lexicon
shape the pre-lexical compensation process in the
same way as physically unambiguous fricatives.

This result appeared to contradict the feed-forward
view. In particular, it cannot be explained in terms of
the merging of lexical and pre-lexical information at a
phonemic decision stage (Norris et al., 2000) because
the lexicon provides information about the identity of
the fricative, but not about the identity of the stop.
At the time this was the most convincing evidence of
activation feedback. In fact the logic underlying this
experiment still represents a “gold standard” for identify-
ing this kind of feedback. It goes beyond simply demon-
strating that there are top-down or predictive effects,
and instead looks for evidence that the lexical effect
modulates the inner workings of pre-lexical processes.

The tables have since turned, however, such that the
evidence from the compensation for coarticulation para-
digm currently challenges the claim of activation feed-
back in speech recognition (McQueen et al, 2009).
Many other factors turn out to contribute to Elman and
McClelland’s (1988) finding. Transitional probabilities
between fricatives and stops (Magnuson, McMurray,
Tanenhaus, & Aslin, 2003; Pitt & McQueen, 1998),
effects of word length and of perceptual grouping
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(Samuel & Pitt, 2003), the replicability of the effect
(McQueen, 1991b; McQueen et al., 2009; Samuel & Pitt,
2003); and experiment-induced biases (McQueen, 2003;
McQueen et al, 2009) all have their role to play in
accounting for apparent demonstrations of lexical invol-
vement in compensation for coarticulation. To date,
there is no convincing evidence from this paradigm
showing activation feedback (see McQueen et al.,, 2009,
for a more detailed account).

Indeed, there is evidence from the paradigm that
directly contradicts activation feedback. Lexical involve-
ment in fricative decisions (i.e. deciding that the final
ambiguous sound of christmals/[] is /s/ rather than /[/)
can be observed even in the absence of lexical involve-
ment on the subsequent stops (e.g. no compensatory
shift in /t/-/k/ decisions consistent with the lexical bias
on the fricative) or even in the presence of effects
quite opposite to those predicted by the lexical bias
(McQueen et al., 2009; Pitt & McQueen, 1998). These dis-
sociations between fricative and stop decisions chal-
lenge TRACE because the feedback-based account
assumes that if the lexicon is influencing pre-lexical pro-
cessing to cause the effect on fricatives, then an effect on
the stops should necessarily follow (at least if the com-
pensation for coarticulation mechanism was operating,
as was the case in these studies). In contrast, the dis-
sociations support feed-forward accounts in which the
pre-lexical compensation for coarticulation process is
impervious to lexical influence, but in which the
lexicon can still influence decisions about the fricatives
at a post-lexical decision stage, as in Merge (Norris
et al., 2000).

3.3. Neuroimaging data

The available behavioural data are thus either neutral
with respect to whether there is feedback or, in the
case of the diagnostic evidence from the compensation
for coarticulation paradigm, speaks against it. Neuroi-
maging data have also been used to address
whether there is lexical-pre-lexical feedback in speech
perception.

In an fMRI study (Myers & Blumstein, 2008), partici-
pants provided not only behavioural evidence of a
Ganong effect (i.e. a shift of the /k/-/g/ boundary favour-
ing the lexically consistent alternative in kiss-giss vs. kift-
gift contexts) but also a reflection of this effect in brain
activity (the BOLD signal in the superior temporal gyrus
[STG], bilaterally, varied as a function of the ambiguity
of the to-be-categorised stop and, critically, of the
lexical contexts). Myers and Blumstein argue that since
STG is responsible for perceptual processing, lexical
modulation of the STG must reflect feedback.
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This argument hinges on assumptions about the func-
tion of the STG, specifically that it is engaged in pre-
lexical speech processing and that it is not engaged in
lexical processing. While there is good evidence that
STG is involved in mapping the speech signal onto the
mental lexicon (Hickok & Poeppel, 2007) it is far from
clear that there is a distinct division of labour in which
the STG is engaged only in pre-lexical processing
(DeWitt & Rauschecker, 2012; Price, 2012; Ueno, Saito,
Rogers, & Lambon Ralph, 2011). Furthermore, even if it
were the case that neural-level feedback from an area
dedicated to lexical processing fed to one dedicated to
pre-lexical processing, it would still be necessary to
determine that feedback’s computational function. The
TRACE-style activation feedback discussed above is one
possible function, but there are many other compu-
tations that could be being performed, including feed-
back for learning, feedback for binding or feedback for
attentional control.

Another concern with the Myers and Blumstein (2008)
data are that BOLD signals reflect processes spread out
over time (in this case over 1200 ms, delayed relative
to stimulus offset), and hence may not directly reflect
online processing. This concern does not apply to
another neuroimaging study, in which Gow, Segawa,
Ahlfors, and Lin (2008) also looked at the Ganong
effect, but used a combination of MEG, EEG and struc-
tural MRI. A lexical effect was again observed behaviour-
ally (a shift of the /s/-/f/ boundary in s/shandal vs. s/
shampoo contexts). Time-varying activity in the supra-
marginal gyrus (SMG) was found to “Granger-cause”
later time-varying activity in the posterior STG, 280-
480 ms after stimulus onset. If the SMG is associated
solely with word-form representation, and the STG is
associated solely with pre-lexical processing, this causal-
ity effect would be evidence of feedback. But once again,
this argument hinges on how clear it is what the SMG
and STG do, and there is not yet consensus on this
(compare, e.g. DeWitt & Rauschecker, 2012; Gow, 2012;
Price, 2012; Ueno et al., 2011). Furthermore, these data
again leave open the question of what computational
function is being served by the connections between
these brain regions. In short, neuroimaging data so far
are not diagnostic about whether there is activation
feedback.

3.4. Other forms of feedback

Our argument so far has been that prediction in speech
recognition is not based on activation feedback. Acti-
vation feedback is not the best way to compute online
predictions; predictions are of little help unless they
can be updated in the light of new evidence. In other

words, we need to learn from our experience. In fact,
feedback has an important role to play in learning. For
example, lexical feedback can be used in perceptual
learning to retune pre-lexical representations, allowing
listeners to adapt to different listening situations, such
as when we encounter a speaker with a foreign or
regional accent, or someone with an idiosyncratic way
of speaking (Norris, McQueen, & Cutler, 2003).

There is now substantial evidence for lexically guided
retuning of speech perception (for reviews; see, e.g.
McQueen, Tyler, & Cutler, 2012; Samuel & Kraljic, 2009).
When a listener hears an ambiguous fricative in a
lexical context that biases its interpretation (e.g. [7],
midway between [f] and [s], in a gira[?] context) listeners
rapidly adapt their category boundaries so as to interpret
further instances of that ambiguous fricative in a manner
consistent with the earlier lexical information (in the
example, they treat [?] as [f]). Furthermore, perceptual
retuning transfers to the same sound appearing in new
words, suggesting that lexical information has been fed
back to retune pre-lexical processing and hence to
help in the perception of new words spoken in the
same way (Maye, Aslin, & Tanenhaus, 2008; McQueen,
Cutler, & Norris, 2006; Sjerps & McQueen, 2010). That is,
the listener can make better predictions as to how the
phonemes produced by that speaker should be cate-
gorised. However, this form of lexical feedback is quite
different from activation feedback. Lexical feedback for
learning improves future perception, but does not alter
immediate online processing. As Norris et al. (2003)
argue, feedback for learning can occur in a way that
does not influence immediate online processing and
therefore does not necessarily entail activation feedback.
Comparing the evidence against activation feedback
from the compensation for coarticulation paradigm
with the evidence for lexically guided retuning under-
lines that feedback for learning is not based on activation
feedback.

A further vital role for feedback is in binding differ-
ent components of a representation into a coherent
whole. In order to construct an integrated percept of
the world we need to form a structured representation
in which different features of the input are linked
together in a coherent representation. Mooney pictures
provide a well-known example: A two-tone image that
looks to be nothing more than a set of black blobs
on a white background will reveal itself as a picture
of a Dalmatian if the viewer is first exposed to a full-
tone picture of a Dalmatian. When we see such pictures
we know which parts of the image correspond to the
head, body, and legs; the percept now corresponds to
a Dalmatian, and the features of the dog cohere into
a whole. Similarly, when listening to speech, we do
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Figure 1. Connectionist network given the sequence /haidiar/.

not just hear some speech and extract an independent
representation of a sequence of words. We know which
part of the speech signal corresponds to which word. A
theory of perception should have a mechanism to bind
together representations both within and between
levels.

Figure 1 shows a toy connectionist network where the
input is the phoneme sequence /haidiar/. This input will
activate hi, hide, dear, and ear. But which phonemes go
with the word dear? When we look at Figure 1T we can
see lines connecting dear to its constituent phonemes,
so the answer seems very straightforward. It is obvious
because we can trace the lines in both directions. The
word dear, however, does not “know” which phonemes
activated it because it cannot “see” back down the
forward connections. It just receives activation. If there
are no backward connections, then there is no way of
forming an integrated percept of the word dear and its
constituent phonemes. In order to form such a percept
the phonemes need to be bound to the word, and this
requires some form of bi-directional communication.

Critically, in contrast to activation feedback, in these
non-activation cases the feedback is beneficial. These
forms of feedback either are necessary for perception
to be successful, or can make perception more efficient.
Activation feedback, in contrast, has no such beneficial
effects and can even be harmful. These beneficial
forms of feedback could underlie purported neuroima-
ging demonstrations of top-down effects (Gow et al,
2008; Myers & Blumstein, 2008). More generally, it
seems plausible that recurrent connections known to
exist in the brain reflect these kinds of beneficial feed-
back (for attention, learning and binding) rather than
online activation feedback.

3.5. Summary

Listeners could use activation feedback to realise predic-
tions about speech sounds during spoken language pro-
cessing. But instantiating predictions through this form
of feedback is of no benefit to speech recognition. That
is, predictions about upcoming words, and hence their
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component sounds, can be made at the lexical level or
above, but feeding this information back to the pre-
lexical level does not make for better interpretation of
the speech signal. Furthermore, the available behav-
ioural and neuroimaging data are either not diagnostic
about this form of feedback, or (in the case of the com-
pensation for coarticulation paradigm) contradict the
predictions of the feedback-based model TRACE. Acti-
vation feedback therefore appears not to be the means
by which listeners process speech or make predictions
about spoken language.

While our focus has been on feedback between the
lexical and pre-lexical levels about lexical contextual
effects on the segments of spoken words, we believe
that these arguments apply equally forcefully to other
levels of speech processing and other types of contextual
effect. The theoretical arguments about the lack of
benefits of online feedback are not restricted to the
lexical-pre-lexical interface (or indeed to spoken
language processing). Furthermore, although it is logi-
cally possible that data could favour activation feedback
in other domains while continuing not to do so in this
specific domain, it is surely more parsimonious to
assume that, in the absence of evidence to the contrary,
conclusions will hold across domains. Importantly, we are
not aware of diagnostic evidence for activation feedback
(of the type where higher level contextual information
modulates the operation of a lower level pre-decisional
process) at other levels in speech recognition.

The absence of activation feedback in Shortlist B also
means that the model is not challenged by the data on
dissociations in lexical involvement in the compensation
for coarticulation paradigm (McQueen et al., 2009; Pitt &
McQueen, 1998). The model has feed-forward flow of
information from the pre-lexical to the lexical level and,
as in the Merge model (Norris et al., 2000), phonological
decision-making is based on the merging of information
from both the pre-lexical and the lexical levels. Simu-
lations reported in Norris and McQueen (2008) show
that Merge B can account for the available data on
lexical involvement in phonemic judgement tasks. Short-
list B is also consistent with the data that there is lexically
guided retuning in speech perception (Norris &
McQueen, 2008; Norris et al., 2003). Note also that it is
compatible with the neurobiological evidence that
there are recurrent neural connections; such connections
could reflect the variety of functions discussed earlier:
feedback for learning, for attentional control or for
binding.

Given the theoretical arguments for Bayesian infer-
ence, it may therefore come as no surprise that propo-
nents of interactive activation have recently begun to
reformulate their theories so that interactive-activation
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networks with feedback connections can perform
Bayesian inference (McClelland, 2013; McClelland,
Mirman, Bolger, & Khaitan, 2014). McClelland (2013)
admits that:
the original IA model may have failed to carry out proper
Bayesian computations on two counts: it distorted these
computations due to its basic activation assumptions
and it distorted them due to its failure at lower levels

to take back out its own contribution to the signals it
received from higher levels. (p. 23)

Revisions to the (stochastic; McClelland, 1991) IA model
in which the pre-lexical nodes do indeed subtract out
their own contributions to the feedback allow the
model to correctly perform Bayesian inference (McClel-
land, 2013).

Since the development of this new class of models,
the debate between IAM and Bayesian model appears
to have been resolved. Both sides of this debate now
agree that Bayesian optimality is as good as any model
can do and hence, at the computational level, speech
perception is Bayesian. Some differences do remain,
however. In particular, the two frameworks still make
different predictions about the compensation for coarti-
culation paradigm. In contrast to feed-forward models
such as Shortlist B, a Bayesian IAM still predicts that
lexical feedback should alter phoneme representations
and trigger compensation for coarticulation. The data
we have already reviewed suggest that this does not
happen.

Furthermore, IAM s have the disadvantage that the
activation assumptions do not guarantee that speech
recognition will be Bayes-optimal. While McClelland
(2013) has shown that such models can be made to
operate in a Bayesian fashion, this adds an assumption
to the core set of interactive-activation assumptions.
Interactive activation, with its activation feedback, can
thus be viewed as the wrong place to start in model
development. All we actually need is Bayes.

The most parsimonious model of speech perception,
therefore, is a Bayesian one that does not include acti-
vation feedback. This also means that while the model
needs mechanisms for learning, attentional control and
binding, the way to implement those beneficial functions
is not likely to be through activation feedback. As we
have argued, for example, learning appears to occur in
the absence of online effects. In the Bayesian model,
therefore, there is a clear distinction between speech
learning and speech recognition: learning occurs
without affecting online recognition of the material
that induces the learning. This distinction would be effec-
tively lost in a model in which activation feedback
somehow had to be switched off for recognition, but
on for learning.

4. New approaches to modelling prediction

So far, we have argued that prediction in speech percep-
tion is Bayesian, and that it is not based on activation
feedback. Several alternative frameworks, including gen-
erative models and predictive coding, have recently
received considerable attention. Do these frameworks
offer more promising accounts than interactive acti-
vation does of how Bayesian prediction might operate?

4.1. Generative models

Models such as TRACE and Shortlist A (Norris, 1994) can
be characterised as performing template matching. The
input is a set of symbols representing features, letters
or phonemes, and words are represented as sequences
of letters or phonemes. Recognition involves selecting
the lexical representation that best matches the input.
Selection is performed by competition between lexical
nodes mediated by inhibitory connections between
those nodes. The lexical representations cover the
entire range of possible configurations of words in
the input. The input need not match exactly to one of
the lexical representations; a degree of generalisation
to unseen patterns is possible. In these models the
feed-forward connections can be seen as embodying
an inverse model representing the transformation
between sensory input and words in the lexicon.

It will not always be possible, however, to construct an
inverse model. Under these circumstances a simple tem-
plate matching process with a fixed set of templates will
fail. This is particularly apparent in the case of visual
object recognition where information is lost when the
image of a 3D object is projected onto a 2D retina. Any
2D image may have been generated by infinitely many
3D objects. Consider the problem of perceiving the
form of a 3D wireframe cube that might appear in any
orientation or location. One could try to solve this
problem by having many different templates. An alterna-
tive, though, is to have a forward generative model of a
cube. Using basic geometry one can project a single
canonical representation of a cube onto the image and
rotate it and expand or contract it. If some combination
of those transformations produces an image that
matches the input, then the input might be a cube
(see Pece, 2007, for an introduction to generative
models in the context of vision).

A forward generative model thus uses top-down con-
nections to model the sensory input that would be
expected (generated) on the basis of some higher level
representation. However, these top-down connections
perform a very different function to those in an IAM. In
TRACE, activation is fed back via top-down connections
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to simply boost the activation of nodes at an earlier level.
In a generative model the forward model is compared to
the input via top-down connections and the discrepancy
between the two is then passed forward as a “prediction
error”. The parameters of the generative model are
adjusted so as to minimise prediction error. The
process of homing in on the best match is effectively a
search operation which minimises the prediction error
between the internal hypothesis and the sensory input.
Yuille (1991) referred to this kind of processing as a
“deformable template” and Mumford (1992) used the
term “flexible template”. A generative model will also
incorporate prior knowledge - perhaps cubes are more
likely to appear in some orientations than others.
During learning it will be necessary to adapt the genera-
tive model of the input. Similarly, if the environment
changes then the model will have to be updated to
better “predict” the input. This is what happens in
Kleinschmidt and Jaeger's (2015) model of perceptual
learning and adaptation.

A generative model requires flow of information from
more abstract high-level object representations to lower
level sensory process. This type of model and the tem-
plate matching process represent opposite extremes.
The contrast is between storing lots of representations
(templates) in memory in the hope that the input will
map fairly directly onto one of them, or storing a single
representation and having to search through parameter
space to see if there is a set of parameters that maps the
input onto that single representation. In many cases the
best solution will combine the two - a fast forward-
matching process with an approximate inverse model
that deals with the most probable inputs, which can be
adapted with a slower generative process that shows
better generalisation to previously unencountered
input (c.f. Rao & Ballard, 1997, p. 747). The forward
process will also provide an informed set of parameters
to use as a starting point for a search.

This idea is consistent with a range of data from the
visual object recognition literature. For example, Serre,
Oliva, and Poggio (2007) examined performance in a
masked animal/non-animal classification task and
compared their human data with simulations from a neu-
robiologically plausible model of visual perception. They
suggested that a feed-forward system could perform the
classification task when there was little visual clutter, but
would require a contribution from recurrent connections
as clutter increased. (Note that their model should not be
taken as placing a limit on the performance of feed-
forward processing.)

In speech perception, the most familiar forms of gen-
erative models are those in analysis-by-synthesis (Halle &
Stevens, 1959, 1962) and motor theory (Liberman,

LANGUAGE, COGNITION AND NEUROSCIENCE . 13

Cooper, Shankweiler, & Studdert-Kennedy, 1967; for a
review of motor theory, see Galantucci, Fowler, &
Turvey, 2006). These models were not generally pre-
sented as Bayesian. The original motivation for analysis-
by-synthesis was as a way to overcome the invariance
problem; it is difficult to discover features of the
speech signal that retain invariance over speakers or con-
texts. Proponents of analysis-by-synthesis suggested that
it might be possible to synthesise the signal from articu-
latory features and adjust the parameters of that syn-
thesis so as to achieve a match to the input. Poeppel
and colleagues (Bever & Poeppel, 2010; Poeppel,
Idsardi, & van Wassenhove, 2008; Poeppel & Monahan,
2010) have recently tried to revive interest in analysis-
by-synthesis as a model of speech perception, and
have made the case that this is a Bayesian model.

What situations in speech recognition might cause
feed-forward systems to become inadequate and
hence make the extra cost of employing structured
generative models worthwhile? One situation concerns
conditions analogous to occlusion in object recognition.
For example, with auditory continuity illusions (Warren,
Obusek, & Ackroff, 1972), listeners perceive a signal as
being continuous even when it is interrupted by noise.
This might be explained by assuming that listeners con-
struct a model of both signal and noise which accounts
for the input as being potentially produced by a continu-
ous signal masked by noise.

One piece of empirical data suggesting a possible role
of generative models in speech recognition comes from
a study by Johnsrude et al. (2013). They examined listen-
ers’ ability to identify words spoken by one speaker in the
presence of a second stream of speech from a different
speaker, a task in which success is presumed to be due
in good part to the listener’s ability to stream out the
second speaker. They manipulated whether the second
speaker was an unknown speaker or the participant’s
spouse. Listeners performed better when the speaker
was their spouse. While there are many reasons why
people may come to ignore what their spouse says, the
result is what would be expected if listeners have a
more exact model of the more familiar voice. The
better the model, the easier it should be to use it to
“explain away” the interfering voice and therefore to sep-
arate out the two streams. Regardless of whether this
particular study can be taken as evidence for generative
models, it does suggest an alternative approach to the
study of feedback. Instead of trying to manipulate prop-
erties of the target stimulus itself, it might be possible to
look at ways in which feedback processes might mitigate
the effects of interfering stimuli.

The kind of prediction embodied in structured gen-
erative models provides an interesting contrast to the
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predictions implicit in, say, word frequency effects. The
latter predictions are effectively precompiled as a result
of experience, whereas a prediction about how a particu-
lar word form might be manifest under conditions that
may never have been encountered before must be con-
structed online. However, while there are many plausible
circumstances where a slower generative process might
come to the rescue when a perceiver encounters unusual
input, there is still little basis for assuming that such a
process plays a significant role in online perception of
normal speech.

4.2, Predictive coding

Friston and colleagues (Friston, 2003; Kilner, Friston, &
Frith, 2007) refer to the use of generative models in the
ways described above as “predictive coding”. Note that
predictive coding is not a way of generating specific pre-
dictions as to what will come next. As Kilner et al. (2007)
have pointed out, “the prediction addressed in predictive
coding is predicting the sensory effects from their cause”
(p. 161). Predictive coding has been invoked as an expla-
nation of both behavioural (Sohoglu, Peelle, Carlyon, &
Davis, 2014) and neuroimaging data (Clos et al, 2014;
Sohoglu, Peelle, Carlyon, & Davis, 2012). So far, however,
these are data that can be considered to be consistent
with predictive coding, rather than diagnostic of it.

Although recent discussions of predictive coding
often emphasise the online perception role of generative
models, an equally important part of the predictive
coding framework is the learning of efficient codes.
Since the seminal paper of Rao and Ballard (1999), the
concept of predictive coding has had a significant influ-
ence on the development of models of neural compu-
tation (for a review, see Huang & Rao, 2011). Current
conceptions of predictive coding provide schemes for
learning efficient codes using generative models. Net-
works using predictive coding may sometimes need
feedback for learning of efficient codes, but once a
code has been developed, online processing can be
done by the feed-forward connections alone.

Indeed, early work on predictive coding did not use
top-down processing at all. The idea of predictive
coding dates back to the early 1950s (Harrison, 1952;
Oliver, 1952), and was introduced in the context of
radio and television transmission. In the context of
speech processing, linear predictive coding forms the
basis of a standard speech compression algorithm, used
for instance in the GSM phone system. In all of these
cases, the aim was to construct an efficient code to
allow information to be transmitted over a channel with
limited bandwidth. For example, a simple form of predic-
tive coding would be one taking advantage of the fact

that, in television signals, very little changes from one
frame to the next. Transmission can be made much
more efficient if only the difference between successive
frames (the prediction error) is transmitted. If the input
signal violates the predictions embodied in the transmit-
ter and receiver, the transmitter will need to pass on the
error signal — that is, the discrepancy between the predic-
tion and the input. The receiver must know the code used
by the transmitter, but need not pass information back to
it. It should be clear from this example that neither the
transmitter nor the receiver generate specific predictions
that anticipate what will come next.

The television example is about predictive coding in
the temporal domain, but such coding can also operate
in the spatial domain. This is the basis of predictive
coding models of the retina (e.g. Hosoya, Baccus, &
Meister, 2005; Srinivasan, Laughlin, & Dubs, 1982). The
retina can take advantage of the fact that signals in adja-
cent locations are highly correlated. That is, the value at
one location effectively predicts the value at nearby
locations. Instead of transmitting the absolute light
levels in individual cells, it is possible to reduce the
required bandwidth by transmitting only the difference
between each cell and its neighbours. Note that there
may be no need to decode the information that is
transmitted. As Hosoya et al. (2005) point out, the goal
of predictive coding is not to pass on to the brain a veridi-
cal representation of the world, “Instead, the system must
reduce the onslaught of raw visual information and extract
the few bits of information that are relevant to behaviour.”

The main prerequisite for predictive coding, therefore,
is to discover the most efficient code. This could be done
using feedback to tune the encoder (see Figure 6 of Rao
& Ballard, 1999), although Rao and Ballard noted that
“the equation for the dynamics of the network can be
rewritten such that some of the effects of feedback are
replaced by recurrent lateral interactions” (p. 84).
Huang and Rao (2011) add that “it is not yet clear from
neurophysiological experiments whether feedback
connections indeed carry predictions, and feed-forward
connections the residual errors”.

An encoder might also learn a compressed code
autonomously. This code could then be passed to later
stages of perception which have to learn how to inter-
pret that code. This has parallels with how deep neural
networks used for speech and object recognition are
constructed (Hinton, Osindero, & Teh, 2006). The initial
layers are “stacked” Restricted Boltzmann Machines
which perform unsupervised learning. Subsequent
layers are trained by supervised learning. Once trained,
these networks achieve state-of-the-art recognition per-
formance operating in a purely feed-forward manner.
This invokes once again the distinction between online
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and offline feedback. Feedback may sometimes be
necessary to learn a code but, once established, that
code can be used without feedback.

As a framework for understanding neural compu-
tation, predictive coding has been very productive. The
most successful applications of the predictive coding
approach have been in modelling low-level vision, and
the target has been primarily neurobiological data
rather than behavioural data. More recently though,
Yildiz, von Kriegstein, and Kiebel (2013) have developed
a computational model of speech recognition based on
predictive coding, in the sense of a hierarchical genera-
tive model. It is, of course, a Bayesian model, and it is
an extension of an earlier biologically inspired model of
production and recognition of birdsong (Yildiz & Kiebel,
2011). Top-down connections play a critical role in
both learning and recognition in this model. Recognition
is determined by the representation (called a “module”)
that leads to the lowest prediction error in generating
the sensory input. The fact that this model can also
learn to recognise speech gives it an advantage over
TRACE and Shortlist. However, it has yet to be applied
to the same range of phenomena as either of those
models. The current simulation is limited to a small voca-
bulary, but it can recognise spoken digits rather than
simply working on a transcription of the spoken input.
Note, however, that even for this approach as a model
of birdsong there are competing accounts using feed-
forward architectures (Drew & Abbott, 2003; Larson, Billi-
moria, & Sen, 2009). Nevertheless, Yildiz et al.'s model is
an exciting development. It now remains to be seen
whether this model makes novel predictions.

5. Conclusions

There can be no doubt that listeners make predictions
when listening to speech. The doubts arise when we con-
sider how, or even whether, these predictions influence
lower level perceptual processes. In the behavioural lit-
erature, questions about feedback have generally been
formulated in the context of simple feedback of acti-
vation from lexical to pre-lexical processes. Early behav-
ioural studies collated cases where lexical information
had an influence on phoneme detection or classification
and presented these as evidence of feedback. However,
these effects simply showed that lexical information
could bias decisions made about the output of pre-
lexical processes; this effect could readily be simulated
by feed-forward models. Although IAMs could also simu-
late these effects, this form of interaction is unable to do
anything to improve perception.

The adoption of a Bayesian framework has changed
the nature of the debate over prediction and interaction.
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Improving perception now means performing Bayesian
inference, and this can be done using either feed-
forward models (Norris & McQueen, 2008) or modified
IAMs (McClelland, 2013). In most behavioural tasks
these competing accounts will therefore make exactly
the same predictions. Indeed, the compensation for coar-
ticulation paradigm seems to be the only one capable of
generating behavioural data that might distinguish
between the two accounts. There the data favours the
non-interactive view (McQueen at al, 2009; Pitt &
McQueen, 1998). Recent neuroscientific evidence
(Travis et al., 2013) also suggests that there is an early
stage of acoustic-phonetic processing that is unin-
fluenced by lexical context.

Although, as we have demonstrated, there is little
support for simple activation feedback in online proces-
sing, other forms of feedback or recurrence can play an
important role in perception. In particular, there is ample
evidence that feedback makes an important contribution
to learning. Such beneficial forms of feedback have yet to
receive the attention they deserve. The feedback embo-
died in generative models serves a useful function and
may deliver testable behavioural predictions. We have
suggested that binding also involves a form of feedback
which would be needed in order to implement even
those models we typically think of as feed-forward.

Bayes and prediction are natural bedfellows. Bayes’
theorem specifies how to update predictions (beliefs)
in the light of new evidence. In a simple Bayesian
model such as Shortlist B, the baseline prediction is
that words will appear with probabilities determined
by their frequency of occurrence in the language. As
new spoken input arrives, those probabilities are
updated in the light of that new evidence so as to gen-
erate revised predictions. Yildiz et al.’s (2013) model is
concerned with predicting the perceptual realisation of
words. Kleinschmidt and Jaeger (2015) focus on how lis-
teners’ predictions adapt as a result of learning. The
content of the prediction in these models is subtly differ-
ent, but they have in common that they all are Bayesian.

When the first computational models of speech rec-
ognition were developed it seemed to many inevitable
that a task as complex as speech perception would
involve activation feedback. Decades later, however,
there is still no convincing behavioural evidence that
this is the case. Part of the reason for the early enthu-
siasm for top-down prediction was that the power of
bottom-up models was often unappreciated. The per-
formance of an ideal observer cannot be beaten, and
Bayesian (ideal observer) models do not require top-
down prediction. The value of generative models and
predictive coding might also seem obvious, but the scar-
city so far of explicit computational models embodying
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these ideas makes them hard to evaluate. To reiterate:
the question is not whether there is prediction but
when and how it operates. Without worked-out models
it is hard to generate the most important predictions —
what should the data look like?
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