Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Fragmentation and reliable size distributions of large ammonia and water clusters

MPG-Autoren
/persons/resource/persons173654

Schütte,  S.
Research Group Clusterdynamik, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173672

Steinbach,  C.
Research Group Clusterdynamik, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173477

Buck,  U.
Research Group Clusterdynamik, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bobbert, C., Schütte, S., Steinbach, C., & Buck, U. (2002). Fragmentation and reliable size distributions of large ammonia and water clusters. European Physical Journal D, 19(2), 183-192.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-1791-2
Zusammenfassung
The interaction of large ammonia and water clusters in the size range from n = 10 to 3400 with electrons is investigated in a reflectron time-of-flight mass spectrometer. The clusters are generated in adiabatic expansions through conical nozzles arid are nearly fragmentation free detected by single photon ionization after they have been doped by one sodium atom. For ammonia also the (1+1) resonance enhanced two photon ionization through the à over tilde state with ν = 6 operates similarly. In this way reliable size distributions of the neutral clusters are obtained which are analyzed in terms of a modified scaling law of the Hagena type [Surf. Sci. 106. 101 (1981)]. In contrast. using electron impact ionization. the clusters are strongly fragmented when varying the electron energy between 150 and 1 500 eV. The number of evaporated molecules depends on the cluster size and the energy dependence follows that of the stopping power of the solid material. Therefore we attribute the operating mechanism to that which is also responsible for the electronic sputtering of solid matter. The yields, however. are orders of magnitude larger for clusters than for the solid. This result is a consequence of the finite dimensions of the clusters which cannot accommodate the released energy.