Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The formation of dimers and trimers in free jet 4He cryogenic expansions

MPG-Autoren
/persons/resource/persons173647

Schöllkopf,  W.
Emeritus Group Molecular Interactions, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173691

Toennies,  J. P.
Emeritus Group Molecular Interactions, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bruch, L. W., Schöllkopf, W., & Toennies, J. P. (2002). The formation of dimers and trimers in free jet 4He cryogenic expansions. Journal of Chemical Physics, 117(4), 1544-1566.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-176B-9
Zusammenfassung
The formation of dimers, trimers, and tetramers in a free jet cryogenic expansion of 4He atoms has been studied by diffraction from a nanostructure transmission grating. The final average velocities, speed ratios and ambient temperatures of the expansions for source temperatures of 30, 12, and 6 K and source pressures between 0.1 and 80 bar were determined from time-of-flight measurements of the He atoms. The final mole fractions of the He2, He3, and He4 clusters in the beam were determined from the intensities of the corresponding first-order diffraction peaks for the same range of source conditions. For each source temperature, the final mole fractions of these small clusters first rise, pass through a maximum and then decrease with increasing source pressure. The processes leading to the formation of these clusters are simulated with a kinetic model that allows for density and temperature changes in the expanding beam. The best-fit three- body recombination rate constant for dimer formation increases by over three orders of magnitude as the thermal energy decreases from 1 K to 1 mK, in qualitative agreement with recent theories. (C) 2002 American Institute of Physics.