
SV-AUTOPILOT: optimized, automated construction of structural
variation discovery and benchmarking pipelines

Journal Information

Journal ID (nlm-ta): BMC Genomics

Journal ID (iso-abbrev): BMC Genomics

Title: BMC Genomics

ISSN (electronic): 1471-2164

Publisher: BioMed Central (London)

Article/Issue Information

Date received: 27 May 2014

Date accepted: 21 February 2015

Publication date (electronic): 25 March 2015

Publication date (pmc-release): 25 March 2015

Publication date (collection): 2015

Volume: 16

Issue: 1

Electronic Location Identifier: 238

Article Id (accession): PMC4520269

Article Id (pmcid): PMC4520269

Article Id (pmc-uid): 4520269

PubMed ID: 25887570

Publisher ID: 1376

DOI: 10.1186/s12864-015-1376-9

Categories

Subject: Research Article

Keywords

Keywords
Keyword: Structural Variation
Keyword: SV tool
Keyword: Meta-tool
Keyword: Non-human genome
Keyword: Standardized pipeline
Keyword: SV prediction
Keyword: Benchmarking
Keyword: Next-Generation Sequencing Analysis
Keyword: SV tool development

Custom metadata

issue-copyright-statement: © The Author(s) 2015

SV-AUTOPILOT: optimized, automated construction of structural
variation discovery and benchmarking pipelines

Wai Yi Leung W.Y.Leung@lumc.nl
Tobias Marschall t.marschall@mpi-inf.mpg.de
Yogesh Paudel paudelyogesh@gmail.com
Laurent Falquet Laurent.Falquet@unifr.ch
Hailiang Mei h.mei@lumc.nl
Alexander Schönhuth A.Schoenhuth@cwi.nl
Tiffanie Yael Maoz (Moss) yaelmaozphd@gmail.com

(a) Sequencing Analysis Support Core, Leiden University
Medical Center, Leiden, The Netherlands

(b) Center for Bioinformatics, Saarland University,
Saarbrücken, Germany

(c) Max Planck Institute for Informatics, Saarbrücken,
Germany

(d) Centrum Wiskunde and Informatica, Amsterdam, The
Netherlands

(e) Animal Breeding and Genomics Centre, Wageningen
University, Wageningen, The Netherlands

(f) University of Fribourg and Swiss Institute of
Bioinformatics, Fribourg, Switzerland

(g) Weizmann Institute of Science, Rehovot, Israel

Abstract

Background

Many tools exist to predict structural variants (SVs), utilizing a variety of algorithms.
However, they have largely been developed and tested on human germline or somatic
(e.g. cancer) variation. It seems appropriate to exploit this wealth of technology available
for humans also for other species. Objectives of this work included:

a. Creating an automated, standardized pipeline for SV prediction.

b. Identifying the best tool(s) for SV prediction through benchmarking.

c. Providing a statistically sound method for merging SV calls.

Results

The SV-AUTOPILOT meta-tool platform is an automated pipeline for standardization of
SV prediction and SV tool development in paired-end next-generation sequencing (NGS)
analysis. SV-AUTOPILOT comes in the form of a virtual machine, which includes all
datasets, tools and algorithms presented here. The virtual machine easily allows one to
add, replace and update genomes, SV callers and post-processing routines and therefore
provides an easy, out-of-the-box environment for complex SV discovery tasks. SV-
AUTOPILOT was used to make a direct comparison between 7 popular SV tools on
the Arabidopsis thaliana genome using the Landsberg (Ler) ecotype as a standardized

© Leung et al. 2015

License (open-access): This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

2 SV-AUTOPILOT: optimized, automated construction of structural variation discovery and
benchmarking pipelines

dataset. Recall and precision measurements suggest that Pindel and Clever were the most
adaptable to this dataset across all size ranges while Delly performed well for SVs larger
than 250 nucleotides. A novel, statistically-sound merging process, which can control the
false discovery rate, reduced the false positive rate on the Arabidopsis benchmark dataset
used here by >60%.

Conclusion

SV-AUTOPILOT provides a meta-tool platform for future SV tool development
and the benchmarking of tools on other genomes using a standardized pipeline. It
optimizes detection of SVs in non-human genomes using statistically robust merging.
The benchmarking in this study has demonstrated the power of 7 different SV tools
for analyzing different size classes and types of structural variants. The optional merge
feature enriches the call set and reduces false positives providing added benefit to
researchers planning to validate SVs. SV-AUTOPILOT is a powerful, new meta-tool for
biologists as well as SV tool developers.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1376-9) contains
supplementary material, which is available to authorized users.

Background
Structural variations (SVs) are the main source of intra- and interspecies variation and have
been shown to play an important role in the evolution of many species [1-4]. SV detection
is now playing a leading role in the advancement of research for many organisms such as
plant breeding and our understanding of human diseases and disorders [5,6]. Indeed, SVs are
of interest to researchers from varying backgrounds aiming to address SVs from different
angles. Therefore the need to identify the most efficient and reliable tools for SV analysis is
critical to the advancement of genomic research for all organisms.

Large genomic structural variants, such as insertions and deletions of more than 20 base
pairs (bp), copy number variants and translocations are often induced during the course
of DNA repair. Several DNA repair mechanisms exist in plants and animals, but usage
may vary according to structure and arrangement of the genome being studied. Some
relevant, SV-inducing mechanisms include non-homologous end-joining (NHEJ) associated
with DNA-repair at regions with very limited or no homology, non-allelic homologous
recombination (NAHR) in highly similar regions (unequal cross-over), fork stalling and
template switching (FoSTeS) as in replication-error mechanisms, and finally transposable
element (TE)-mediated mechanisms of repair [see [7] for a more detailed review of genomic
technologies and computational techniques currently used to measure SVs].

In addition to variations in the types of SV induced, genomes may also vary in their degree
of complexity. In contrast to vertebrate genomes, for example, plant genomes are more
susceptible to hybridization and to further increases of genome complexity [8]. These
challenges can often exacerbate the numbers of sequencing errors and mapping uncertainties
which further add to the complexity of identifying structural variants [9]. This may lead
to differences in behavior of the SV detection tools that were solely designed with Homo
sapiens or animal data in mind. While previous studies have sought to address problems of
sequencing errors and mapping uncertainties in human genomes with the development of
new SV tools [10,11], we are motivated by the need for insight into the performance of SV

SV-AUTOPILOT: optimized, automated construction of structural variation discovery and
benchmarking pipelines

3

tools on non-human genomes. It is critical that multiple tools be used in identifying SVs as
each tool is likely to respond to these changes in genome structure with varying degrees of
success [12]. This should be taken into consideration when choosing a SV detection tool(s)
as some are more suited to one purpose than another. For this reason we have chosen to
benchmark tools using varying SV techniques.

SV detection techniques
Four general techniques are employed to detect structural variations from paired-end
sequencing data. Each approach has merits and shortcomings. Here we provide a brief
sketch of each technique and list a few tools which make use of them.

Coverage: The coverage, that is the amount of reads aligning to a genomic region, can be
used to draw conclusions on its copy number status. When a region is not covered by any
reads, for instance, one can conclude that the respective part is not present in the genome
under investigation. An advantage of this technique is that it allows for a direct estimate of
the copy number. However this technique only applies to larger events and can be affected
by sequencing biases. In general, this type of methods works best for comparing pairs
of samples sequenced using the same platform/protocol. Examples of such tools include
CNVer and CNVnator [13,14].

Internal segment size (paired-end reads and mate-pairs): The internal segment (IS) is the
unsequenced part between the two read ends in a paired-end sequenced (genomic) fragment.
Library preparation and sequencing protocols determine the shape of the distribution of
internal segment sizes. When alignments at a particular locus give rise to estimates of an
IS size that deviates significantly from this background distribution, the locus is likely
to be affected by a structural variation in the genome being examined. As tools draw
conclusions based on statistics of IS length, their performance rates crucially depend on
the shape of those distributions. In general, they perform best for unimodal distributions
with a small standard deviation. As the observed IS size increases in the presence of
insertions, the maximal length of insertions that can be detected is limited by the mean IS
size. This limitation, however, does not exist for deletions. Examples of IS size-based SV
discovery tools include Breakdancer, CLEVER, GASV, HYDRA, Modil, SVDetect and
VariationHunter [10,11,15-19].

Split-reads: Split-read methods try to align reads across structural variation breakpoints.
That is, one of the two read ends is aligned such that the SV is part of the unaligned
read. This technique has the advantage of yielding single base pair resolution. However,
performance is dependent on the length of the reads as shorter reads lead to more,
ambiguous (split-read) alignments, especially in repetitive regions of the genome. Examples
of such tools include PINDEL, SplazerS, and CREST [20-22]. Standard read mappers like
BWA, Bowtie, GSNAP or Stampy, to a certain extent, can also provide correct, gapped
alignments for insertions and deletions (indels) shorter than 50 bp [23-26].

Local assembly: Structural variations can also be detected by running a de novo assembly
and comparing the resulting contigs with the reference genome. This method is unbiased,
yields single base-pair resolution and is, in general, the only way of detecting insertions of
novel sequence longer than the read length. Short reads and repetitive areas, however, make
it difficult to build sufficiently long contigs from NGS reads. Examples of assembly tools
include ALLPATHS, SOAPdenovo and VELVET [27-29].

Combined: In recent years, several hybrid methods using more than one of these four
paradigms have been developed (e.g. DELLY, MATE-CLEVER, PRISM, and SV-seq2
[30-33]).

Creating a “Meta-Tool” for All Organisms
The difficulty in selecting tools for SV prediction in non-human genomes is manifold.

4 SV-AUTOPILOT: optimized, automated construction of structural variation discovery and
benchmarking pipelines

• First, tools developed so far are often tailored towards human or vertebrate genomes
[11,19,20,30-32]. That is, tools may expect genomes to be diploid and of a certain
repetitive structure, gene count, CG content and so on. Without further analysis, it
remains unclear which tools are robust with respect to changes in GC content, complexity
and, last but not least, ploidy. Reliable benchmark datasets that reflect such modifications
are required to properly evaluate tool performance.

• Second, creating an optimal selection of SV calls from the applicable tools is another,
involved issue. To do this, one needs a statistically sound procedure by which to create
reliable and strong consensus call sets from the tools chosen, and one, again, needs to
rigorously evaluate such consensus call sets.

• Third, tools should be evaluated in a standardized pipeline. Because SV discovery is still
a relatively recent and active area of research, benchmark datasets that reflect both true
sequence context and SV abundance are hardly available [12]. What confounds all the
issues further is that many tools, due to being in active use, frequently undergo updates,
which may decisively touch upon their strengths and weaknesses.

Testing and comparing multiple tools in a standardized fashion is daunting for both
researchers and programmers. A “meta-tool” platform addresses these many considerations
as it is flexible with respect to frequent version updates, integration of new tools and new
datasets. Here, we provide such a platform in the SV-AUTOPILOT Virtual Machine. This
platform allows for

• Evaluation of new tools.

• Running multiple SV callers in a single run from an easy, out-of-the-box program.

• Interoperability with downstream analysis as all outputs are in VCF format.

In order to identify the SV tool(s) most adaptable to non-human genomic research, we
further propose to benchmark all tools of interest on known genomes with validated SVs
through a standardized pipeline.

In summary, we present SV-AUTOPILOT, a Structural Variation AUTOmated PIpeLine
Optimization Tool. SV-AUTOPILOT standardizes the SV detection pipeline and can
be used on existing computing infrastructure in the form of a Virtual Machine (VM)
Image. Modularization of components allows for easy integration of additional tools,
version updates and other benchmark datasets. In addition, the benchmarking data of tool
performance and computational demands provided here demonstrates the critical need
for using multiple SV tools for predicting SVs. Using this platform, researchers are able
to identify SVs from multiple SV detection tools with the choice of merging the call sets
according to the statistically-sound approach provided here. False positives are thereby
reduced and the call set becomes enriched for ‘true’ SV events. SV-AUTOPILOT provides
a much needed resource for biomedical researchers, bioinformaticians and tool developers.
The SV-AUTOPILOT is available with a user guide via the open source repository GitHub
https://github.com/ALLBio/allbiotc2 and the VM is hosted on the ALLBIO web site https://

bioimg.org/sv-autopilot.

Methods

Benchmarking: datasets
Tools were benchmarked on a reconstructed genome using validated SVs from the
Arabidopsis thaliana Lansberg (Ler) ecotype [34]. The SV calls were incorporated into the
TAIR9 genomic sequence as per the procedure previously described [15] for Craig Venter’s
genome [35]. Reads were simulated to correspond to Illumina HiSeq paired-end 100 bp read

https://github.com/ALLBio/allbiotc2
https://bioimg.org/sv-autopilot
https://bioimg.org/sv-autopilot

SV-AUTOPILOT: optimized, automated construction of structural variation discovery and
benchmarking pipelines

5

data with a fragment size of 500 bp and 30x coverage, using simseq with the Illumina HiSeq
error profile [36].

Most SV tools were developed for human or animal genomes [11,19,20,30-32]. In order
to compare the performance of the tools on human and plant genomes, simulated reads
from the human chromosome 21 of Venter’s genome were used (see [15,35]), where read
simulation proceeded analogously to the read simulation for the ‘Ler’ Arabidopsis genome.
In this way, reads correspond to Illumina HiSeq paired-end 100 bp read data with a fragment
size of 500 bp and 30x coverage. We chose Venter’s genome as the set of variants arising
from it make an independent, high-quality choice of a set of variants which has already been
used in previous studies [15,16,31]. Most importantly, this set of “truth” variants does not
suffer from tool-specific biases, as, for example, sets of variants obtained from the 1000
Genomes project. As the variants from the 1000 Genomes project stem from computational
tools, those tools would clearly outperform the others when evaluated on such datasets.

We determined two standard deviation (sd) settings for insert sizes, one of which reflects
a popular, realistic scenario (sd = 15, [37]) and the other one of which represents a “worst-
case” scenario (sd = 50), which reflects less optimal sequencing library protocols. This
analysis highlights how the performance rates of tools behave relative to increased standard
deviation. Although we can expect much better sd values using the latest technologies, an
sd of 50 is not atypical. The 1000 Genomes project, for instance, contains samples with sd
values in this range. Table 1 provides detailed parameters for each of the datasets used here.
Note that, one can “downsample” these datasets to also emulate scenarios of lower coverage
if desired.

Table 1

Overview of test datasets
Type Genome Sequencer Length(bp) Insertsize (bp) Insert sd Coverage Illumina 1.9
FastQ Paired End Tair9 SimSeq Illumina Profile 100 500 15 30x Illumina 1.9 FastQ
Paired End Tair9 SimSeq Illumina Profile 100 500 50 30x Illumina 1.9 FastQ Paired
EndHuman Genome hg19SimSeq Illumina Profile1005001530xIllumina 1.9 FastQ Paired
EndHuman Genome hg19SimSeq Illumina Profile1005005030x

Arabisopsis (Tair9) and Human (hg19) datasets were simulated using a SimSeq Illumina
1.9 Paired End profile with 100 bp reads and an insert size of 500. Two standard deviations
of insert size were created for each dataset, more ideal (15) and less ideal (50). All datasets
were simulated to 30x coverage.

Benchmarking: SV tools
For benchmarking, several well-known SV discovery tools were selected as defined by the
following criteria:

• Open source (for the sake of comparing algorithms).

• Support of command line mode (excludes tools requiring a graphical user interface).

• Default parameters provided and applicable in all cases considered here.

• Scaled to process a moderate size genome with the operating limits of a common laptop.

The tools selected varied in terms of their approaches. We included paired-end methods,
split-read methods and combinations thereof, as those combined approaches reflect the state-
of-the-art in indel discovery. In detail, we selected Breakdancer, Clever, Delly, GASV,
Pindel, Prism, and SVDetect [11,15,16,19,20,30] for being included in SV-AUTOPILOT, as
a selection of well-known state-of-the-art SV discovery tools. In addition, the modularized
structure of SV-AUTOPILOT conveniently allows one to replace and add tools according
to individual preferences. All tools were run using the most recent releases available as of

6 SV-AUTOPILOT: optimized, automated construction of structural variation discovery and
benchmarking pipelines

January 30, 2014. Although many tools are able to predict varied types of structural variants
(e.g. also inversions, translocations and mixed events beyond insertions and deletions), the
emphasis here is on insertions and deletions of more than 20 bp. We leave an extension of
our platform towards those other classes of SVs as promising future work. All technology
presented here is easily adapted to also allow for these extensions.

Discovery of insertions and deletions smaller than 20 bp is a prevalent part of variant
discovery pipelines (GATK, [38]) and poses no further challenges to the user, while
discovery of indels greater than 20 bp still comes with substantial difficulties. Therefore,
the focus of this work will be on insertions and deletions larger than 20 bp. They may be
referred to as ‘indels’ or structural variants (SVs) although we recognize that this may
occasionally clash with existing nomenclature.

Benchmarking: SV size classes
For the purposes of benchmarking, insertions and deletions events were divided into 5
size categories: 20-49 bp, 50-99 bp, 100-249 bp, 250-999 bp, 1kbp-50kbp. Distinguishing
between those size classes allows one to identify size-dependent strengths and weaknesses
of the tools considered. The first class, 20-49 bp is, to a certain degree, still in reach of even
ordinary alignment tools, while generally constituting the major area of activity of split-read
aligners. 50-99 bp can in general be considered as the most difficult size range, where both
split-read aligners and IS based approaches face non-negligible challenges. Overall, the first
three size ranges, 20–49 bp, 50–99 bp and 100-249 bp have sometimes been referred to as
the twilight zone of SV calls as all of them are rather difficult to identify. Above 250 bp, the
SVs are usually larger than the insert range, which makes calling them relatively easy for IS
based approaches. We determined 50Kb, the size of the largest validated SV documented
in test datasets, as an upper limit for the purposes of the benchmarking documentation
provided here. It is noteworthy that most tools that are able to detect 50Kb SVs can also
detect larger SVs. Validated SV counts in the various size classes for both (Human and
Arabidopsis) data sets are provided in Table 2.

Table 2

Counts of Validated SVs used to benchmark SV tool performance
Data type Type Length 20-49 Length 50-99 Length 100-249 Length 250-999 Length
1000-50000 Human chr. 21insertion13637301910 Tair v.9 insertion 8094 446 82 44 3
Human chr. 21 deletion 1183319194 Tair v.9 deletion 3595 781 393 572 370

Virtual machine
Virtual machines (VM) ensure the consistency, reproducibility and reliability of our test
environment. Each VM was equipped with the same software installation. The virtual
machines were installed with Ubuntu 12.04.3 LTS using default configuration. After
installation of the essential system components, the software of each SV tool was installed,
and a non-persistent system image was cloned from the master machine. The non-persistent
image provides a consistent and reliable working environment to run the benchmarking
analyses.

For initial testing of computational performance by each tool, VMs were created for varying
numbers of CPU cores (4/8/12/16/32) and varying amounts of available main memory
(32/64/96/128/256 GB). Multiple machines were booted with this non-persistent image, SV
discovery tools were run and the resulting data was collected. Different settings were tested
to explore the computational resource requirements of the SV discovery tools.

SV-AUTOPILOT: optimized, automated construction of structural variation discovery and
benchmarking pipelines

7

Analysis pipeline
SV-AUTOPILOT was implemented using Makefiles according to the GNU Make syntax.
A modularized setup was employed, which allows one to disable and replace aligners and
SV discovery tools as needed or as per personal preference. Additionally, such modularity
enables tool-wise parallelization.

While generation of a BAM file from raw reads proceeds sequentially, SV discovery tools
may be run in parallel (Figure 1). Additional scripts written in Python have been included
to transform the output of the tools into VCF, if needed. Additional parameters can be set
for the Performance Metrics analysis and the optional merge step, discussed below. The
Makefiles for SV-AUTOPILOT are supported and are available via the github repository
(https://github.com/ALLBio/allbiotc2). The pipeline for SV-AUTOPILOT, including pre-
processing via FASTQC [39] and Sickle [40], is detailed in Figure 1.

Figure 1

SV-AUTOPILOT pipeline. Illumina pair-end NGS data in the form of a fastq file is
submitted to the pipeline for SV analysis along with a genomic reference sequence. A
quality report is provided by Fastqc, and Sickle is used for trimming low quality reads.
Modularity allows for a choice of read aligner and SV tools. Samtools flagstat is run to
evaluate the quality of the mapping. Each tool’s output is converted to a VCF format, unless
already provided by the program, for downstream use by the researcher. For those wanting
to benchmark tool performance, the performance metrics for the tools can be compared in
the PDF report provided. Finally, when using multiple tools as part of a pipeline leading
to SV validation, the option to merge SV calls according to the statistical method provided
here is available to enrich the call set with true calls by merging results and reducing false-
positive calls.

Merging: statistical considerations
The difficulty in creating a “consensus” call set from different, individual call sets consists
in identifying virtually identical calls and merging such calls into one, unifying call. While
a few ad-hoc procedures have been suggested in the literature [41,42], neither of them
addresses how to control the false discovery rate, that is the amount of calls that are merged
mistakenly because of random effects. Moreover, they also do not address the specific
strengths and weaknesses of the tools whose usage led to generation of the individual call
sets. A statistically sound merging procedure should be guided by two insights:

1. The accuracy of SV breakpoints provided can vary substantially among SV discovery
tools. While split-read aligners tend to deliver highly accurate breakpoints, internal
segment size based approaches deliver inaccurate breakpoints. This has two
implications: first, merging criteria for internal segment size based approaches should
be more relaxed and, second, the consensus call should indicate the most accurate
breakpoint predictions available.

2. Calls may be mistakenly merged, simply due to random effects, such as fluctuations of
call density, too large individual call sets, and so on, and one would like to control the
false discovery rate, that is, the amount of mistakenly merged events. In other words,
merging criteria should be such that randomly chosen call pairs meet them only with
low probability.

While 1) can be addressed by evaluating tools on benchmark datasets, 2) needs further
elaboration. Consider, for example, two tools that, on a genome of length G, within a
certain size range---for example, deletions of size 20–50 bp---have generated call sets
of size K1 and K2, respectively. That is, K1 out of G bases in the genome are affected

https://github.com/ALLBio/allbiotc2

8 SV-AUTOPILOT: optimized, automated construction of structural variation discovery and
benchmarking pipelines

by a breakpoint (for deletions here and in the following: the centerpoint between the
left and right breakpoint) of a deletion of size 20–50 bp predicted by the first tool,
respectively K2 out of G bases are affected by breakpoints (deletions: centerpoints)
predicted by the second tool. Let the merging criterion be that the breakpoints of
two calls do not deviate by more than L basepairs (see “Note on reciprocal overlap”
below, why reciprocal overlap is not a statistically sound criterion, hence should be
avoided when merging, and also evaluating calls). The probability \documentclass[12pt]
{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts}
\usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs}
\usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$
{P}_{{\mathrm{K}}_1,{\mathrm{K}}_{2,}G} $$\end{document} that the breakpoints
of two randomly picked calls, one from the first tool and one from the second tool, are at a
distance of at most L basepairs is

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym}
\usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}
\usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {P}_{{\mathrm{K}}_1,{\mathrm{K}}_{2,}G}=1-\left(1-{\left(1-
{\left(1-\frac{\mathrm{L}}{\mathrm{G}}\right)}^{K_1}\right)}^{K_2}\right)=1-{\left(1-
\frac{\mathrm{L}}{\mathrm{G}}\right)}^{{\mathrm{K}}_1{\mathrm{K}}_2}\approx 1-
\exp \left(-{\mathrm{K}}_1{\mathrm{K}}_2\frac{\mathrm{L}}{\mathrm{G}}\right) $$
\end{document}

Merging: note on reciprocal overlap as criterion
Reciprocal overlap does not represent a sound criterion for merging two calls, and also for
evaluating calls, because:

1. For large deletions, breakpoints are allowed to deviate by massive amounts of base
pairs. For example, requiring 50% reciprocal overlap for two deletions of 10,000 bp
in length allows a distance of 5000 bp between breakpoints. A random caller that
randomly places breakpoints in the genome is considerably more likely to place a
“good” breakpoint than, for example, when considering 100 bp deletions.

2. For truly small deletions, say of 20 bp in length, breakpoints are only allowed to
deviate by at most 10 bp (for the case of 50% reciprocal overlap). This, however, is
oblivious to the repetitiveness of many genomes and to the fact that gap placement
is difficult, which renders it possible that two different calls are virtually identical
although deviating by up to 50 bp in terms of breakpoints.

3. There is no obvious, overlap-based criterion for insertions.

In summary, the idea of using (whatever form of) overlap for merging and evaluating calls is
statistically unsound and introduces severe, misleading biases when merging calls.

Merging: parameters
Guided by the considerations outlined above, we determine that two calls are to be merged
if their breakpoints do not deviate by more than 50 bp and the lengths of the indels predicted
do not deviate by more than 20 bp. While the merging algorithm is able to take tool-specific
criteria into account, we found that the unifying criteria in use here yielded excellent results
in our benchmark. As a general guideline for adapting criteria to tools, we recommend
stricter criteria for split-read aligners (for example, 20 bp distance and 10 bp length
deviation), because (split-)alignment based breakpoint predictions tend to be very accurate
(while still being prone to misplacement due to repetitive sequence and gap placement
artifacts) whereas for IS based approaches 100 bp distance and 100 bp length deviation are

SV-AUTOPILOT: optimized, automated construction of structural variation discovery and
benchmarking pipelines

9

still the most sensible, because on top of the usual issues due to repetitive sequence, these
tools can predict highly inaccurate indel breakpoints.

It is worth noting that the probability that the breakpoints of two calls do not deviate by
more than 50 bp is never larger than 0.01, for any of the tools and genomes considered here
when merging calls whose lengths do not deviate by more than 20 bp---which determines
the sizes and K1 and K2 of two different call sets to be compared, as computed by the above
formula. Therefore, criteria of this order of magnitude (i.e., allowing differences of tens of
basepairs) are a good general choice when studying within-species genetic variation.

Merging: algorithm
The merging algorithm receives calls (insertions or deletions) from different tools, all of
which are specified by a breakpoint and the length of the variant in question (for insertions:
the base position where the new sequence has been inserted; for deletions: the center point
between the left and the right base position that specify the boundaries of the deleted
sequence. Note: specifying the center-point and the length of a deletion uniquely determines
a deletion. As discussed above, the merging algorithm merges calls that are significantly
close to each other, such that both calls are statistically likely (significantly) to have
discovered the same insertion or deletion in the genome under consideration.

As a formal model to capture this, consider a graph, in the sense of graph theory. The nodes
of the graphs are the calls from the different tools, and an edge between two calls reflects
that the breakpoints are at a distance of not more than 50 bp and that the length does not
deviate by more than 20 bp, which, as per the considerations from above, translates into
statistical evidence that the two calls correspond to the same indel.

After having constructed this ‘call graph’, all of its maximal cliques are identified. We
recall that, by definition, a clique is a subset of nodes all of which are pairwise connected
by edges. Hence, a clique translates into a set of calls all of which are statistically likely to
represent virtually identical variants. Maximal cliques, that is cliques to which no further
nodes can be added without violating the clique property, represent maximal sets of calls
that point at the same, likely correct indel. Hence, they are maximal call subsets that one
should merge into one unifying call.

Enumerating all maximal cliques proceeds by making use of an algorithm that greatly
profits from the fact that calls can be ordered by their breakpoints in a left-to-right fashion.
The algorithm was successfully used in other graph-based settings where nodes specified
genomic loci and could be ordered in a left-to-right fashion [15]. The merging algorithm is
implemented in Python. The algorithm is very fast; for example, using a MacBookPro5,5
(2.53 GHz Intel Core 2 Duo processor), it merges call sets from as many as 8 tools within
only 2 or 3 minutes.

Benchmarking: comparative analysis report
In the final step of the SV-AUTOPILOT pipeline, the predictions of each tool are compared
to the true annotations if available. In this, the considerations are similar to those used for
merging. That is, we take into account that the breakpoint and length specifications of tools
can deviate from the true annotations, even though they have indeed discovered the true
indel in question. Reasons for this are plentiful. As expected, internal segment size based
approaches are unable to specify breakpoints (highly) accurately. Even (split) alignment
based approaches may fail to provide accurate breakpoints, as accurate gap placement in
alignments has remained an algorithmic challenge in bioinformatics (see e.g. [26] for a
description of effects such as gap annihilation, gap wander and so on).

A predicted insertion/deletion is considered as a match to a true insertion/deletion if the
distance of their center points and their length difference are below user defined thresholds.
When choosing thresholds, the tools’ characteristics, the genome under investigation, and

10 SV-AUTOPILOT: optimized, automated construction of structural variation discovery and
benchmarking pipelines

the insert size distribution of the sequencing library should be taken into consideration. As
discussed above, split-read methods tend to be more accurate than paired-end methods in
terms of breakpoint resolution. A large standard deviation of the sequencing library will lead
to read pair methods being less accurate when estimating the length of an indel.

Here, two different sets of parameters were used, which we refer to as strict and relaxed.
The strict parameters require a center distance of at most 50 bp and a length difference of
at most 20 bp, while the relaxed criteria ask for a center distance of at most 100 bp and a
length difference of at most 100 bp. Both definitions still ensure that a match is statistically
significant (i.e. unlikely to occur just by chance), which has been guided by considerations
that are similar to the ones we have described for merging call pairs -- the difference here is
that one of the call sets are the true annotations. The relaxed setting was included to show
that some tools make calls that are near true events but don’t exactly hit them (as indicated
by the difference between strict and relaxed precision). Based on these criteria, the analysis
scripts reports various different statistics stratified by length range. The above parameters
were used in benchmarking; however, these can be modified by SV-AUTOPILOT users and
adapted to their dataset and tool set.

To assess general performance, the absolute number of calls as well as precision and recall
are reported. Precision is the percentage of predictions that match a true annotation and
thus measures the fidelity of the calls made by a given tool. Recall, on the other hand, is
the percentage of true events that have been spotted by the given tool and thus measures
the comprehensiveness of the delivered call set. Reporting these two performance statistics
allows researchers to choose a tool that suits their needs. For instance, when seeking to
discover new variants, high recall may be more important than high precision so as to
capture as many true calls as possible. Conversely, when validation is planned, a low
false positive rate is imperative and the focus of SV detection would be on high precision.
Following validation, realignment may be performed and the preference may again change
to that of a high recall rate for the purposes of SV discovery, knowing you may encounter a
higher number of false positives. For the purposes of presenting an overall tool performance
metric, the F-measure is provided, defined as 2*precision*recall/(precision + recall). Thus,
this measure integrates recall and precision into one single performance indicator.

Some false positive predictions of insertions or deletions are caused by substitution (or
mixed) events where a stretch of DNA in the reference genome has been replaced by
another piece of DNA in the donor genome under study. The lengths of the deleted and the
inserted parts need not be equal and we refer to their difference as the effective length of a
substitution event. Internal segment size based approaches are especially prone to confusing
such events with insertions or deletions of the same effective length. Therefore, the reports
provided by SV-AUTOPILOT contain another column (Mix.) with the percentage of
predictions that do not match an insertion/deletion but do match a true mixed event of
similar effective length.

To assess the accuracy of each tool in terms of the reported breakpoint positions, we
also report the average center point distance as well as the average length difference of
all predictions that match a true event. Knowing the accuracy in terms of breakpoint
coordinates can be valuable for correctly merging calls of different tools and for the design
of primers used in SV validation.

Interpretation of the results with Radarplots
To ease the interpretation of the performance metrics, radarplots, generated using matplotlib
[43], are plotted providing the measurements of tool performance for Recall, Precision,
and the F-measure. Some tool types are expected to perform better than others for a given
metric. In general, it is expected that split read aligners will be more accurate at reporting
breakpoints and thus perform with higher precision than other types of aligners. The radar
plots provided here are in the shape of a pentagon (Figure 2). Each angle of the pentagon

SV-AUTOPILOT: optimized, automated construction of structural variation discovery and
benchmarking pipelines

11

relates to a size class of SV evaluated. Tool performance data is plotted for each size class
and the points are connected to provide a visual representation of performance across all size
classes.

Figure 2

Radar plot interpretation. Each corner of the pentagon represents a size class of SV.
Performance is measured on a scale of 0–1.0, with 1.0 as the most accurate calls. Each tool
is associated with a color as indicated in the associated figure legend. Tool performance
across all size classes is easily assessed by evaluating the total area of the radar plot covered
by a given tool.

Results and discussion
The SV-AUTOPILOT pipeline was created to provide a “meta-tool” platform for using
multiple SV-tools, to standardize benchmarking of tools, and to provide an easy, out-of-
the-box SV detection program. As most SV tools have been designed, and/or optimized
for performance on human datasets, benchmarking tool performance on another organism
was needed to determine whether some tools are more adaptable to a non-human genome
than others. As the field of SV detection continues to develop and evolve, and more tools
continue to become available, a standardized method of evaluating their performance
relative to other existing tools was also needed. Here we show that SV-AUTOPILOT
addresses each of these needs.

SV-AUTOPILOT was used to benchmark seven Structural Variation (SV) prediction tools.
The tools were tested on their ability to identify SVs in the two reconstructed genomes
described, human chromosome 21 and the Arabidopsis Lansberg (Ler) genome, a plant
genome. Human chromosome 21 was chosen as a representative sample of the human
genome which is small in size and for which many structural variants have been validated.
As most SV tools were designed for use with the human genome, it is expected that tools
will perform well on the human dataset and that it can be used in a comparison of tool
performance on the Arabidopsis genome. For reports on tool performance on the human
genome as a whole, please see the original SV tool publications. In addition, we have
provided the results of the entire Venter genome data as an example of a larger, whole
genome run in the Additional file 1. As expected, the tools perform much the same, however
some tools were unable to meet the demands of managing such a large genome, likely due to
the higher memory needs for SV processing.

The tools included in the SV-AUTOPILOT virtual machine and which were used for
benchmarking included GASV, Delly, Breakdancer, Pindel, Clever, SVDetect, and Prism.
Due to the modularized set-up employed by SV-AUTOPILOT, SV tools can be easily
added or removed from the pipeline. In addition, the user is able to choose which of several
alignment algorithms is used in their analysis. For example, in the initial testing phase, both
BWA-mem and Bowtie2 were tested for each tool. BWA-mem was chosen for continued
downstream use in the benchmarking as all the tools tested performed a few percentage
points higher in recall and precision (data not shown). For the purposes of benchmarking,
the ability of a tool to accurately call an SV was measured using the analysis tools described
and reports were generated for both Ler and Human Chromosome 21 data at standard
deviations of 15 and 50 (provided in Additional file 1).

Performance metrics
Often researchers are unable to predict the computing requirements for a given tool as this
information may be missing in the literature or beyond the reach of the average biologist.
For those required to make specific requests for computing time at computing centers

12 SV-AUTOPILOT: optimized, automated construction of structural variation discovery and
benchmarking pipelines

or on the Cloud, this can be a severe bottleneck to initiating their research. To facilitate
future analysis of tool performance, each tool in this study was evaluated for its computing
performance (Table 3) in addition to SV prediction assessment. Data was collected for RAM
and CPU usage, run time, as well as IO and threading abilities.

Table 3

Typical computational performance by SV tools used for a single run
Tool Multi- threading Mem use on Tair (Mb) Mem use on Human
(Mb) CPU time Tair (h:m.s) CPU time Human (h:m.s) Algorithm SV’s
GASVn10585940:02.080:01.20PEIDVTDellyn57812360:15.020:03.18PE &
SRDVTPBreakdancern21.970:02.410:27.7PEIDVTPindely3500.557793:02.461:16.0SRIDVPClevery238.715980:15.470:14.04PEIDSVdetectn172.332230:07.560:07.31PEIDVTPPrismn1024.968170:28.150:05.59PE
& SRIDVP

Log files document computation performance for each tool used in this benchmarking
study. Documentation from a single run shows memory (mem) usage and CPU time need
to run each tool on Arabidopsis (Tair) and on the Human dataset used in the benchmarking.
Additional columns refer to the type of algorithm used (PE: Paired-end; SR: Split-read) and
the SVs that the tool is reported to be able to predict (I: Insertion; D: Deletion; V: Inversion;
T: Translocation; P: Duplication). Raw log files are included in the supplementary data.

Each tool was run independently on the Arabidopsis dataset and evaluated for computational
performance. As shown in Table 3, CPU time varied widely across tools. For example,
GASV completed the run in 2 minutes, while Pindel took 3 hours and 3 minutes to run.
Clever and Pindel both allow for parallelization while the others tools run on a single thread.
Although parallelization generally improves performance, Pindel does not appear to show
the gains expected. This may be due to the large volume of calls made by Pindel in addition
to Pindel’s very verbose VCF file.

Prediction performance
The ability of each SV tool to accurately call an SV event was evaluated and a PDF report
produced as part of SV-AUTOPILOT’s pipeline (see Additional file 1). While there are
multiple ways of defining ‘accuracy’, in statistics it is typically defined as (true positive
 + true negative)/(true positive + true negative + false positive + false negative). As ‘true
negatives’ are not applicable in this setting, we choose to use an integrative measure of
recall and precision, provided here as the F-measure. In a biological context, ‘accuracy’
can refer to a measure of how close the breakpoint predictions of true positive calls were
to the true breakpoint coordinates. Therefore we provide the average length difference and
the center point distance between true call and prediction. We have separated statistics into
‘strict’ and ‘relaxed’ categories which implicitly address questions of tool accuracy.

Each length class of SV was examined individually to evaluate performance. Table 4
provides an overview of performance by each of the tools on ideal (sd = 15) and less ideal
(sd = 50) datasets for Arabadopsis and Human Chromosome 21. When examined for
Precision, the ability to match a true insertion/deletion, and Recall, percentage of predicted
true insertion/deletions out of total true SVs provided in the dataset, a few tools were shown
to be more adaptable to the Arabidopsis dataset than the others: Clever and Pindel, with
Delly performing well in the largest size class (>1000 bp).

Table 4

Best performing SV tool for each size class of insertion and deletion using normal and
less-ideal datasets of Arabidopsis and Human Chromsome 21
A. Precision Data type Std Dev Length 20–49 P (rel/str) Length 50–99
P (rel/str) Length 100–249 P (rel/str) Length 250–999 P (rel/str) Length
1 K-50 K P (rel/str) Insertion Human chr. 2115CleverPindelCleverClevern/

SV-AUTOPILOT: optimized, automated construction of structural variation discovery and
benchmarking pipelines

13

a88.3/77.885.7/68.888.5/45.8100.0/50Tair v.915PindelClever/ PindelCleverClevern/
a95.0/93.294.3/47.468.1/2366.7/55.6Human chr. 2150PindelClever/PindelClevern/
an/a87.9/75.283.3/55.666.7/17.9Tair v.950PindelClever/PindelCleverClevern/
a94.9/92.794.6/46.273.9/8.360.0/20 Deletion Human chr. 2115Clever/PindelPindelClever/
PindelPindelBreakdancer/Clever92.8/8992.3/76.984.6/42.9100/100100/33.3Tair
v.915PindelDellyPindelPindelClever94.6/94.2100/10089.2/90.287.9/88.768.3/58.1Human
chr. 2150Clever/PindelPindelClever/PindelPindelBreakdancer/
Clever90.9/88.2100/9059.1/42.981.8/81.8100/50Tair v.950PindelDelly/
PindelPindelPindelClever/Pindel94.5/94.3100/90.686.5/86.389.4/89.469.6/61 B. Recall
Data type Std Dev Length 20–49 R (rel/str) Length 50–99 R (rel/str) Length 100–249
R (rel/str) Length 250–999 R (rel/str) Length 1 K-50 K R (rel/str) Insertion Human chr.
2115CleverCleverCleverClevern/a72.883.3605.3n/aTair v.915CleverCleverCleverClevern/
a56.481.292.715.9n/aHuman chr. 2150PindelCleverCleverClevern/a61.848.676.710.5n/
aTair v.950PindelPindelCleverBreakdancern/a34.64395.151.2n/a Deletion
Human chr. 2115PrismCleverCleverDellyBreakdancer88.190.952.673.750Tair
v.915CleverCleverCleverDellySVDetect6582.189.89397Human chr.
2150PrismPrismCleverBreakdancerBreakdancer85.672.763.273.750Tair
v.950PindelCleverCleverDellySVDetect94.552.991.994.996.2

For this work, a standard deviation of 15 is considered normal while a standard deviation
of 50 is considered less-ideal. Recall and Precision were two measures used to evaluate the
ability of a tool to accurately predict SVs. Here the winner for each length class is provided
along with the tools winning value for that category. (P = Precision; R = Recall; Std. Dev
 = Standard Deviation of the Insert size; n/a = no call was made by any tools tested). The
Additional file 1 contains all tool performance statistics in the PDF reports. In Table 4a
both ‘relaxed’ and ‘strict’ criteria (REL/STR) (see Methods) are provided for the precision
measurements which indicates how accurate the tools are at making their calls. In Table 4b
the scores of tool recall demonstrate how much of the SVs the tools are able to discover.

Effect of different standard deviations
In the purification of ligation product step of llumina paired-end sample preparation
protocol, different settings may cause the resulting DNA fragment library to have an insert
library with variations in standard deviation (sd) of the insert size [12]. Therefore simulated
reads for each sample were prepared at both sd 15 and 50.

In the low quality (sd = 50) Arabidopsis dataset, Pindel outperformed other tools in
precision and recall at SV lengths ranging from 20–49, whereas in human chromosome 21,
Clever showed better precision and recall. At the better standard deviation of 15, Clever
consistently performed with the best recall in all SV length classes (Figure 3).

Figure 3

Data quality affects the performance of SV tools in human and Arabidopsis data sets.
Some tools are more affected by changes in data quality than others. The standard deviation
of the insert size of paired end reads was used as a measure of data quality. The Recall and
Precision of Deletion calls are measured for Human and Arabidopsis datasets at the less
optimal (sd = 50) and more optimal standard deviation (sd = 15).

Unlike the other tools, Delly showed no change in calling ability between the sd 15 and
sd 50 datasets. Delly consistently excelled at recall in the largest SV classes of deletions
(>1000 bp). For other tools the change in sd resulted in more significant changes in
performance. For instance, Breakdancer’s performance dropped considerably in the lower
quality dataset, especially for the smaller size classes. However, this is consistent with
Breakdancer documentation [11].

14 SV-AUTOPILOT: optimized, automated construction of structural variation discovery and
benchmarking pipelines

Adapting to non-human datasets, benchmarking in Arabidopsis
Tools tested in this study were initially developed for use in human genome analysis.
However, with the reduction in sequencing costs, many non-human genomes are being
sequenced to identify SVs. Arabidopsis is a well-studied plant species with many validated
SVs. In this analysis we compared the ability of various tools to accurately call SVs in the
genome of a species for which it was not initially designed.

Only 4 of the tools tested were able to predict insertions: BreakDancer, Pindel, Clever
and SVDetect. However, although SVDetect made a few predictions of insertions in the
human dataset, it did not make any predictions at all in the Arabidopsis dataset regardless
of sequence library insert size standard deviation. This was unusual as although more
tools performed at sd 15 than 50, all the other tools were able to make predictions for both
genomes.

As most tools performed better overall on the datasets with a smaller standard deviation,
the comparison of tool performance, between Human Chromosome 21 and Arabidopsis,
provided here is limited to the sd 15 datasets. When compared to the human chromosome
21 dataset, SV tools performance on the Arabidopsis dataset showed reduced precision of
calls in size classes spanning from 50-99 bp and 100-249 bp, but higher recall over all size
classes among insertion events. When examining deletions, the Arabidopsis dataset had
comparable recall to the human dataset at 50-99 bp, but was reduced in the class 20-49 bp.
Above 100 bp, the Arabidopsis data set performed with higher recall than the human
dataset, however, it is possible that the limited number of validated events in the human
chromosome 21 dataset in this size class may limit the statistical power of this analysis.
When examining calls on the basis of recall and precision, Pindel and Clever consistently
out-performed other callers. In general, Clever had higher overall recall while Pindel was
found to perform with higher precision in its calls. However, Prism often performed with
better recall in the human dataset, but not in Arabidopsis. Interestingly, Delly showed the
highest recall in the largest size class of Arabidopsis. This suggests that Pindel and Clever
may be able to offer the best calls for non-human datasets with Delly being useful for
identifying deletions in the largest size class.

Meta-tool performance
Benchmarking of the Arabidopsis dataset used here has shown that some SV tools may be
more adaptable in working with a non-human dataset than others. As demonstrated here,
tools may vary considerably in their performance depending on the size class of SVs to be
identified as well as the quality of the genomic reads. Therefore, it is clear that a meta-tool
is needed to not only provide SV calls, but to group the call-sets from multiple SV tools
and provide a filtered output based on the performance metrics of the individual tools. In
SV-AUTOPILOT, a merging script was developed to take all the calls, filter them, and
provide a merged output (provided in Additional file 1). This merging may be initiated by
the user following the completion of all SV tool runs and parameters set to tailor the output
according to user preferences pertaining to recall and precision.

Unlike other SV merging tools, here researchers receive fewer and more accurate calls to
begin their investigations to validate SVs. When Arabidopsis (sd = 15) calls were filtered
through the merge script, total calls were reduced by as much as 70% (average 61%) with
recall diminished, on average, 27%. In merging a small portion of recall is lost for the
benefit of a reduction of more than half of the calls total (due to merging and elimination
of many false-positives). This results in an enriched set of true calls in the call set for
validation.

As shown in Figure 4, the merging script is able to cluster calls by evaluating their
breakpoints relative to the tool algorithm type applied (see methods section for a complete
description). The user may select which VCF outputs from the various tools run in the SV-

SV-AUTOPILOT: optimized, automated construction of structural variation discovery and
benchmarking pipelines

15

AUTOPILOT pipeline to be considered in the merging process. Merged call-sets, as with
the other tools included in the pipeline, are provided in VCF format and can be visualized on
any genomic browser (however, indexing and/or a track definition file may be required).

Figure 4

Example of merged call set compared to individual call sets. Integrated Genome Browser
view of merged predictions. Calls made by each tool are shown in individual tracks, and the
merged call set provided by SV-AUTOPILOT is shown in the bottom track. In this example
a larger call by Breakdancer has been recentered by the merging algorithm. The red lines on
the bottom indicate the position of the reference variants.

Tool use and development
The SV-AUTOPILOT meta-tool is packaged as a VM. This allows for standardization of the
pipeline for SV prediction. SV tool benchmarking on new genomes, and provides a platform
for evaluating the performance of SV tools under development. The SV-AUTOPILOT
virtual machine is packaged with 7 of the most popular SV tools currently available,
reflecting the most recent updates and versions (as of January 2014). In addition, a merge
script has been added which will filter and rank calls providing researchers with an accurate
and condensed set of calls curated from all the tools. For the purposes of this work, SV-
AUTOPILOT has been run in a whole with all SV-modules enabled. Default configuration
of the pipeline is set to the pipeline described for the benchmarking in this work, however, it
is also customizable to allow for a tailored analysis.

Each of the modules, both SV-callers and pre- and post-processing steps, can be modified
by changing the predefined running parameters while maintaining the structure. A general
pipeline config file hosts the configuration for the pipeline. Project specific or sample
specific settings, involving file conventions, locations of genome files and program
definitions can be altered from the invocation. More specific settings can be changed or a
new procedure added into the pipeline (Detailed instructions can be found in Additional file
1).

For example, the alignment algorithm used in this project was BWA-mem [23]. The
modularized design of SV-AUTOPILOT allows for other aligners, currently provided in
the modules section (bowtie1, bowtie2, bwa-backtrack, bwa-mem, stampy), to be used.
This allows a comparative study of different settings or versions of software using the same
reproducible setup. Indeed, we cannot claim that our decision to do alignment with BWA-
mem is the best practice now or in the future. Therefore the pipeline allows replacement
of functional components with alternative implementations. It is our intention that this
tool be used not only by researchers for generating comprehensive SV calls, but also by
programmers/developers for the testing performance of tools they are developing against
currently available tools. SV-AUTOPILOT is packaged in a VM and allows for just that.
The tool is available at https://bioimg.org/sv-autopilot.

Conclusions
Here we have taken ‘human’ SV prediction technology and applied it to a non-human
organism, Arabidopsis. We have provided benchmarking data on the performance of seven
of the most popular SV prediction tools and tested them on reads of varying quality. Tools
were shown to vary in their ability to adapt to a non-human genomic dataset and datasets of
varying quality.

This work demonstrates the importance of using multiple SV tools in order to cover a
wide range of SV size classes and to minimize false-positive calls. We have packaged
several of these tools into a single Virtual Machine pipeline, SV-AUTOPILOT, to facilitate

https://bioimg.org/sv-autopilot

16 SV-AUTOPILOT: optimized, automated construction of structural variation discovery and
benchmarking pipelines

reproducible research and coupled that with a powerful merging script that filters and
ranks calls providing researchers with an accurate dataset on which to begin their bench
validations. All call-sets have been formatted to fit the standard VCF format to facilitate
visualization in genomic browsers and interoperability with other genomic tools. SV
tool developers and SV researchers are able to test new tools against existing tools to
examine performance, evaluate new datasets for tool optimization, and to generate a high
quality enriched set of SV calls for further validation. The SV-AUTOPILOT VM can be
downloaded with all datasets, tools and algorithms presented here at https://bioimg.org/sv-

autopilot.

Appendices

Additional file

Additional file 1:

The data sets supporting the results of this article are available in the as part of the SV-AUTOPILOT
virtual machine, in https://bioimg.org/sv-autopilot . The scripts used as the basis for the virtual machine
described in this article are available via the GitHub repository, in https://github.com/ALLBio/allbiotc2/.

End notes
Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

WYL created and maintained the virtual machine, designed and implemented the pipeline to facilitate
for this research project. TM participated in the design of the study and designed the evaluation script for
assessing benchmarking results. LF participated in the conception and design of the study. YP participated
in the sequence alignment. LM participated in the design of the virtual machine. AS performed the
statistical analysis, which includes the design of the merging algorithm, and helped to draft the manuscript.
TYM conceived of the study, and participated in its design and coordination and drafted the manuscript.
AS and TM are the developers of Clever. In order to ensure the objective nature of this work, all SV tools
included for benchmarking are strictly followed the exactly same selection and parameter tuning procedure
as stated in the section of "Benchmarking: SV Tools". All authors read and approved the final manuscript.

Acknowledgements
This project was also partially supported by EU FP7 ALLBIO project, grant number 289452,
www.allbioinformatics.eu.

Part of this work was carried out on the Dutch national e-infrastructure with the support of SURF
Foundation.

Wai Yi Leung and Hailiang Mei are partially funded by the TraIT project (grant 05 T-401) within the
framework of the Center for Translational Molecular Medicine (CTMM).

Yogesh Paudel is partially supported by The European Research Council under the European Community’s
Seventh Framework Program (FP7/2007-2013)/ERC Grant agreement no 249894 (SelSweep project).

Alexander Schönhuth acknowledges funding from the Nederlandse Organisatie voor Wetenschappelijk
Onderzoek (NWO), through Vidi grant 639.072.309.

We are grateful to Gert Vriend and Greg Rossier for providing technical and logistical support for our
hackathon meetings.

COST-SeqAhead: This project was partially supported by the EU: Cost Action BM1006: NGS Data
Analysis Network.

https://bioimg.org/sv-autopilot
https://bioimg.org/sv-autopilot
https://bioimg.org/sv-autopilot
https://github.com/ALLBio/allbiotc2/
http://www.allbioinformatics.eu/

SV-AUTOPILOT: optimized, automated construction of structural variation discovery and
benchmarking pipelines

17

References
1. Ventura M Catacchio CR Alkan C Marques-Bonet T Sajjadian S Graves TA Gorilla genome

structural variation reveals evolutionary parallelisms with chimpanzee Genome Res 2011 21 1640
9 10.1101/gr.124461.111 21685127

2. Lisch D How important are transposons for plant evolution? Nat Rev Genet 2013 14 49 61 10.1038/
nrg3374 23247435

3. Feulner PG Chain FJ Panchal M Eizaguirre C Kalbe M Lenz TL Genome-wide patterns of standing
genetic variation in a marine population of three-spined sticklebacks Mol Ecol 2013 22 635 49
10.1111/j.1365-294X.2012.05680.x 22747593

4. Schloissnig S Arumugam M Sunagawa S Mitreva M Tap J Zhu A Genomic variation landscape of
the human gut microbiome Nature 2013 493 45 50 10.1038/nature11711 23222524

5. Olsen KM Wendel JF A Bountiful Harvest: Genomic Insights into Crop Domestication Phenotypes
Annu Rev Plant Biol 2013 64 47 70 10.1146/annurev-arplant-050312-120048 23451788

6. Weischenfeldt J Symmons O Spitz F Korbel JO Phenotypic impact of genomic structural variation:
insights from and for human disease Nat Rev Genet 2013 14 125 38 10.1038/nrg3373 23329113

7. Raphael BJ Structural Variation and Medical Genomics PLoS Comput Biol 2012 8 e1002821
10.1371/journal.pcbi.1002821 23300412

8. Cai X Xu SS Meiosis-driven genome variation in plants Curr Genomics 2007 8 151
10.2174/138920207780833847 18645601

9. Hayes M Pyon YS Li J A Model-Based Clustering Method for Genomic Structural Variant Prediction
and Genotyping Using Paired-End Sequencing Data PLoS ONE 2012 7 e52881 10.1371/
journal.pone.0052881 23300804

10. Hormozdiari F Alkan C Eichler EE Sahinalp SC Combinatorial algorithms for structural variation
detection in high-throughput sequenced genomes Genome Res 2009 19 1270 8 10.1101/
gr.088633.108 19447966

11. Chen K Wallis JW McLellan MD Larson DE Kalicki JM Pohl CS BreakDancer: an algorithm for
high-resolution mapping of genomic structural variation Nat Methods 2009 6 677 81 10.1038/
nmeth.1363 19668202

12. Pabinger S Dander A Fischer M Snajder R Sperk M Efremova M A survey of tools for variant
analysis of nextgeneration genome sequencing data Brief Bioinform 2013 15 2 256 78 10.1093/
bib/bbs086 23341494

13. Medvedev P Fiume M Dzamba M Smith T Brudno M Detecting copy number variation with mated
short reads Genome Res 2010 20 1613 22 10.1101/gr.106344.110 20805290

14. Abyzov A Urban AE Snyder M Gerstein M CNVnator: an approach to discover, genotype, and
characterize typical and atypical CNVs from family and population genome sequencing Genome
Res 2011 21 974 84 10.1101/gr.114876.110 21324876

15. Marschall T Costa IG Canzar S Bauer M Klau GW Schliep A CLEVER: clique-enumerating variant
finder Bioinforma Oxf Engl 2012 28 2875 82 10.1093/bioinformatics/bts566

16. Sindi S Helman E Bashir A Raphael BJ A geometric approach for classification and comparison of
structural variants Bioinforma Oxf Engl 2009 25 i222 30 10.1093/bioinformatics/btp208

17. Quinlan AR Clark RA Sokolova S Leibowitz ML Zhang Y Hurles ME Genome-wide mapping and
assembly of structural variant breakpoints in the mouse genome Genome Res 2010 20 623 35
10.1101/gr.102970.109 20308636

18. Lee S Hormozdiari F Alkan C Brudno M MoDIL: detecting small indels from clone-end sequencing
with mixtures of distributions Nat Methods 2009 6 473 4 10.1038/nmeth.f.256 19483690

18 SV-AUTOPILOT: optimized, automated construction of structural variation discovery and
benchmarking pipelines

19. Zeitouni B Boeva V Janoueix-Lerosey I Loeillet S Legoix-Né P Nicolas A SVDetect: a tool
to identify genomic structural variations from paired-end and mate-pair sequencing data
Bioinformatics 2010 26 1895 6 10.1093/bioinformatics/btq293 20639544

20. Ye K Schulz MH Long Q Apweiler R Ning Z Pindel: a pattern growth approach to detect break
points of large deletions and medium sized insertions from paired-end short reads Bioinforma Oxf
Engl 2009 25 2865 71 10.1093/bioinformatics/btp394

21. Emde A-K Schulz MH Weese D Sun R Vingron M Kalscheuer VM Detecting genomic indel variants
with exact breakpoints in single- and paired-end sequencing data using SplazerS Bioinforma Oxf
Engl 2012 28 619 27 10.1093/bioinformatics/bts019

22. Wang J Mullighan CG Easton J Roberts S Ma J Rusch MC CREST maps somatic structural variation
in cancer genomes with base-pair resolution Nat Methods 2011 8 652 4 10.1038/nmeth.1628
21666668

23. Li H Durbin R Fast and accurate short read alignment with Burrows–Wheeler transform
Bioinformatics 2009 25 1754 60 10.1093/bioinformatics/btp324 19451168

24. Langmead B Trapnell C Pop M Salzberg SL Ultrafast and memory-efficient alignment of short DNA
sequences to the human genome Genome Biol 2009 10 R25 10.1186/gb-2009-10-3-r25 19261174

25. Wu TD Nacu S Fast and SNP-tolerant detection of complex variants and splicing in short reads
Bioinforma Oxf Engl 2010 26 873 81 10.1093/bioinformatics/btq057

26. Lunter G Goodson M Stampy: a statistical algorithm for sensitive and fast mapping of Illumina
sequence reads Genome Res 2011 21 936 9 10.1101/gr.111120.110 20980556

27. Butler J MacCallum I Kleber M Shlyakhter IA Belmonte MK Lander ES ALLPATHS: de novo
assembly of whole-genome shotgun microreads Genome Res 2008 18 810 20 10.1101/gr.7337908
18340039

28. Luo R Liu B Xie Y Li Z Huang W Yuan J SOAPdenovo2: an empirically improved memory-efficient
short-read de novo assembler Giga Science 2012 1 18 10.1186/2047-217X-1-18 23587118

29. Zerbino DR Birney E Velvet: algorithms for de novo short read assembly using de Bruijn graphs
Genome Res 2008 18 821 9 10.1101/gr.074492.107 18349386

30. Rausch T Zichner T Schlattl A Stütz AM Benes V Korbel JO DELLY: structural variant discovery
by integrated paired-end and split-read analysis Bioinforma Oxf Engl 2012 28 i333 9 10.1093/
bioinformatics/bts378

31. Marschall T Hajirasouliha I Schönhuth A MATE-CLEVER: Mendelian-inheritance-aware discovery
and genotyping of midsize and long indels Bioinforma Oxf Engl 2013 29 3143 50 10.1093/
bioinformatics/btt556

32. Jiang Y Wang Y Brudno M PRISM: pair-read informed split-read mapping for base-pair level
detection of insertion, deletion and structural variants Bioinforma Oxf Engl 2012 28 2576 83
10.1093/bioinformatics/bts484

33. Zhang J Wang J Wu Y An improved approach for accurate and efficient calling of structural
variations with low-coverage sequence data BMC Bioinformatics 2012 16 Suppl 6 S6

34. Gan X Stegle O Behr J Steffen JG Drewe P Hildebrand KL Multiple reference genomes and
transcriptomes for Arabidopsis thaliana Nature 2011 477 419 23 10.1038/nature10414 21874022

35. Levy S Sutton G Ng PC Feuk L Halpern AL Walenz BP The Diploid Genome Sequence of an
Individual Human PLoS Biol 2007 5 e254 10.1371/journal.pbio.0050254 17803354

36. Earl D Bradnam K John JS Darling A Lin D Fass J Assemblathon 1: A competitive assessment of
de novo short read assembly methods Genome Res 2011 21 2224 41 10.1101/gr.126599.111
21926179

37. Boomsma DI Wijmenga C Slagboom EP Swertz MA Karssen LC Abdellaoui A The Genome of the
Netherlands: design, and project goals Eur J Hum Genet 2014 22 221 7 10.1038/ejhg.2013.118
23714750

SV-AUTOPILOT: optimized, automated construction of structural variation discovery and
benchmarking pipelines

19

38. McKenna A Hanna M Banks E Sivachenko A Cibulskis K Kernytsky A The Genome Analysis
Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data Genome
Res 2010 20 1297 303 10.1101/gr.107524.110 20644199

39. FastQC A Quality Control tool for High Throughput Sequence Data [http://

www.bioinformatics.babraham.ac.uk/projects/fastqc/]

40. Sickle: A sliding-window, adaptive,quality-based trimming tool for FastQ files [https://github.com/

ucdavis-bioinformatics/sickle]

41. Wong K Keane TM Stalker J Adams DJ Enhanced structural variant and breakpoint detection using
SVMerge by integration of multiple detection methods and local assembly Genome Biol 2010 11
R128 10.1186/gb-2010-11-12-r128 21194472

42. Mimori T Nariai N Kojima K Takahashi M Ono A Sato Y iSVP: an integrated structural
variant calling pipeline from high-throughput sequencing data BMC Syst Biol 2013 7 1 8
10.1186/1752-0509-7-S6-S8 23280066

43. Hunter JD Matplotlib: A 2D graphics environment Comput Sci Eng 2007 9 0090 5 10.1109/
MCSE.2007.55

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/ucdavis-bioinformatics/sickle
https://github.com/ucdavis-bioinformatics/sickle

