Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Femtosecond electron diffraction: Preparation and characterization of (110)-oriented bismuth films

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1.3684975.pdf
(Verlagsversion), 716KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Moriena, G., Hada, M., Sciaini, G., Matsuo, J., & Miller, R. J. D. (2012). Femtosecond electron diffraction: Preparation and characterization of (110)-oriented bismuth films. Journal of Applied Physics, 111(4): 043504. doi:10.1063/1.3684975.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0028-18CB-9
Zusammenfassung
Here, we present a new approach to synthesize (110)-oriented ultrathin membranes of bismuth (Bi). This rather exotic orientation was achieved by directing the growth through rationale control of lattice matching. Bi films were hetero-epitaxially grown on the (100)-surface of freshly cleaved potassium chloride crystals. The sample orientation was characterized by x-ray and electron diffraction. In addition, high quality free-standing films were obtained after dissolution of the substrate in water and controlled evaporation. Femtosecond electron diffraction(FED) was, therefore, used to monitor the coherent shear acoustic phonons in (110)-oriented free-standing Bi films produced by impulsive femtosecond optical excitation. The small de Broglie wavelength (flat Ewald sphere) of keV-electrons combined with an off-Bragg detection scheme provided a magnified view of shear atomic motions, i.e., lattice distortions in the transverse direction. All-optical pump-probe experiments are usually insensitive to shear displacements, a fact that makes FED a unique non-contact method to achieve the complete characterization of elastic properties of nanoscale materials.