Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Quantitative Angle-Resolved Small-Spot Reflectance Measurements on Plasmonic Perfect Absorbers: Impedance Matching and Disorder Effects

MPG-Autoren
/persons/resource/persons125929

Liu,  Na
Research Group Smart Nanoplasmonics for Biology and Chemistry, Max Planck Institute for Intelligent Systems, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Tittl, A., Harats, M. G., Walter, R., Yin, X., Schäferling, M., Liu, N., et al. (2014). Quantitative Angle-Resolved Small-Spot Reflectance Measurements on Plasmonic Perfect Absorbers: Impedance Matching and Disorder Effects. ACS Nano, 8(10), 10885-10892. doi:10.1021/nn504708t.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0028-2CD5-1
Zusammenfassung
Plasmonic devices with absorbance close to unity have emerged as essential building blocks for a multitude of technological applications ranging from trace gas detection to infrared imaging. A crucial requirement for such elements is the angle independence of the absorptive performance. In this work, we develop theoretically and verify experimentally a quantitative model for the angular behavior of plasmonic perfect absorber structures based on an optical impedance matching picture. To achieve this, we utilize a simple and elegant k-space measurement technique to record quantitative angle-resolved reflectance measurements on various perfect absorber structures. Particularly, this method allows quantitative reflectance measurements on samples where only small areas have been nanostructured, for example, by electron-beam lithography. Combining these results with extensive numerical modeling, we find that matching of both the real and imaginary parts of the optical impedance is crucial to obtain perfect absorption over a large angular range. Furthermore, we successfully apply our model to the angular dispersion of perfect absorber geometries with disordered plasmonic elements as a favorable alternative to current array-based designs.