Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The Origin of the Catalytic Activity of a Metal Hydride in CO2 Reduction

MPG-Autoren
/persons/resource/persons136338

Kerger,  Philipp
Corrosion, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125456

Vogel,  Dirk
Corrosion, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125346

Rohwerder,  Michael
Corrosion, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kato, S., Matam, S. K., Kerger, P., Bernard, L., Battaglia, C., Vogel, D., et al. (2016). The Origin of the Catalytic Activity of a Metal Hydride in CO2 Reduction. Angewandte Chemie International Edition, 55(20), 6028 -6032. doi:10.1002/anie.201601402.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0027-C1BB-7
Zusammenfassung
Atomic hydrogen on the surface of a metal with high hydrogen solubility is of particular interest for the hydrogenation of carbon dioxide. In a mixture of hydrogen and carbon dioxide, methane was markedly formed on the metal hydride ZrCoHx in the course of the hydrogen desorption and not on the pristine intermetallic. The surface analysis was performed by means of time-of-flight secondary ion mass spectroscopy and near-ambient pressure X-ray photoelectron spectroscopy, for the in situ analysis. The aim was to elucidate the origin of the catalytic activity of the metal hydride. Since at the initial stage the dissociation of impinging hydrogen molecules is hindered by a high activation barrier of the oxidised surface, the atomic hydrogen flux from the metal hydride is crucial for the reduction of carbon dioxide and surface oxides at interfacial sites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.