Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The role of stoichiometric flexibility in modelling forest ecosystem responses to nitrogen fertilisation

MPG-Autoren
/persons/resource/persons128357

Meyerholt,  Johannes
IMPRS International Max Planck Research School for Global Biogeochemical Cycles, Max Planck Institute for Biogeochemistry, Max Planck Society;
Terrestrial Biosphere Modelling , Dr. Sönke Zähle, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62612

Zaehle,  Sönke
Terrestrial Biosphere Modelling , Dr. Sönke Zähle, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;
Terrestrial Biosphere Modelling , Dr. Sönke Zähle, Department Biogeochemical Integration, Prof. Dr. Martin Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Meyerholt, J., & Zaehle, S. (2015). The role of stoichiometric flexibility in modelling forest ecosystem responses to nitrogen fertilisation. New Phytologist, 208(4), 1042-1055. doi:10.1111/nph.13547.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0027-A709-2
Zusammenfassung
The response of the forest carbon balance to changes in nitrogen (N) deposition is uncertain, partly owing to diverging representations of N cycle processes in dynamic global vegetation models (DGVMs). Here, we examine how different assumptions about the degree of flexibility of the ecosystem’s C:N stoichiometry contribute to this uncertainty, and which of these assumptions best correspond to available data. We applied these assumptions within the framework of a DGVM and compared the results to responses in net primary productivity, leaf N content, and ecosystem N partitioning, observed at 22 forest N fertilisation experiments. Employing flexible ecosystem pool C:N ratios generally resulted in the most convincing model-data agreement with respect to production and foliar N responses. An intermediate level of stoichiometric flexibility in vegetation, where wood C:N changes were decoupled from plant C:N changes, led to consistent similation of production and N cycle responses to N addition. The scaling of leaf N concentration changes to other tissues, commonly assumed by DGVMs, was not supported by reported ecosystem N partitioning. Our analysis further suggested that the purely heuristic way to simulate foliar N changes can lead to ecologically implausible results, which potentially could be reduced by considering resource-use efficiency.