English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Intersegmental Eye-Head-Body Interactions during Complex Whole Body Movements

MPS-Authors
/persons/resource/persons83808

Beykirch,  KA
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84088

Mohler,  BJ
Research Group Space and Body Perception, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

von Lassberg, C., Beykirch, K., Mohler, B., & Bülthoff, H. (2014). Intersegmental Eye-Head-Body Interactions during Complex Whole Body Movements. PLoS ONE, 9(4), 1-15. doi:10.1371/journal.pone.0095450.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0027-8031-F
Abstract
Using state-of-the-art technology, interactions of eye, head and intersegmental body movements were analyzed for the first time during multiple twisting somersaults of high-level gymnasts. With this aim, we used a unique combination of a 16-channel infrared kinemetric system; a three-dimensional video kinemetric system; wireless electromyography; and a specialized wireless sport-video-oculography system, which was able to capture and calculate precise oculomotor data under conditions of rapid multiaxial acceleration. All data were synchronized and integrated in a multimodal software tool for three-dimensional analysis. During specific phases of the recorded movements, a previously unknown eye-head-body interaction was observed. The phenomenon was marked by a prolonged and complete suppression of gaze-stabilizing eye movements, in favor of a tight coupling with the head, spine and joint movements of the gymnasts. Potential reasons for these observations are discussed with regard to earlier findings and integrated within a functional model.