Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

RNA-seq-Based gene annotation and comparative genomics of four fungal grass pathogens in the genus Zymoseptoria identify novel orphan genes and species-specific invasions of transposable elements

MPG-Autoren
/persons/resource/persons146855

Stukenbrock,  Eva H.
Max Planck Fellow Group Environmental Genomics, Max Planck Institute for Evolutionary Biology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Grandaubert, J., Bhattacharyya, A., & Stukenbrock, E. H. (2015). RNA-seq-Based gene annotation and comparative genomics of four fungal grass pathogens in the genus Zymoseptoria identify novel orphan genes and species-specific invasions of transposable elements. G3: Genes, Genomes, Genetics, 5(7), 1323-1333. doi:10.1534/g3.115.017731.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0026-DC0A-4
Zusammenfassung
The fungal pathogen Zymoseptoria tritici is a prominent pathogen of wheat. The reference genome of the isolate IPO323 is one of the best-assembled eukaryotic genomes and encodes more than 10,000 predicted genes. However, a large proportion of the previously annotated gene models are incomplete with either no start or no stop codons. The availability of RNA-seq data allows better predictions of gene structure. We here used two different RNA-seq datasets, de novo transcriptome assemblies, homology-based comparisons, and trained ab initio gene callers to generate a new gene annotation of Z. tritici IPO323. The annotation pipeline was also applied to re-sequenced genomes of three closely related species of Z. tritici: Z. pseudotritici, Z. ardabiliae, and Z. brevis. Comparative analyses of the predicted gene models in the four Zymoseptoria species revealed sets of species-specific orphan genes enriched with putative pathogenicity-related genes encoding small secreted proteins that may play essential roles in virulence and host specificity. De novo repeat identification allowed us to show that few families of transposable elements are shared between Zymoseptoria species while we observe many species-specific invasions and expansions. The annotation data presented here provide a high quality resource for future studies of Z. tritici and its sister species as it provides detailed insights into gene and genome evolution of fungal plant pathogens.