Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Multiple reentrant glass transitions in confined hard-sphere glasses

MPG-Autoren
/persons/resource/persons125267

Mandal,  Suvendu
Theory and Simulation of Complex Fluids, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-Universität Bochum, Universitätsstrae 150, D-44780 Bochum, Germany;

/persons/resource/persons125330

Raabe,  Dierk
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125447

Varnik,  Fathollah
Theory and Simulation of Complex Fluids, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mandal, S., Lang, S., Groß, M. S., Oettel, M., Raabe, D., Franosch, T., et al. (2014). Multiple reentrant glass transitions in confined hard-sphere glasses. Nature Communications, 5: 4435. doi:10.1038/ncomms5435.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0026-B487-E
Zusammenfassung
Glass-forming liquids exhibit a rich phenomenology upon confinement. This is often related to the effects arising from wall-fluid interactions. Here we focus on the interesting limit where the separation of the confining walls becomes of the order of a few particle diameters. For a moderately polydisperse, densely packed hard-sphere fluid confined between two smooth hard walls, we show via event-driven molecular dynamics simulations the emergence of a multiple reentrant glass transition scenario upon a variation of the wall separation. Using thermodynamic relations, this reentrant phenomenon is shown to persist also under constant chemical potential. This allows straightforward experimental investigation and opens the way to a variety of applications in micro-and nanotechnology, where channel dimensions are comparable to the size of the contained particles. The results are in line with theoretical predictions obtained by a combination of density functional theory and the mode-coupling theory of the glass transition.