English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Modelling of island divertor physics and comparison to W7-AS experimental results

MPS-Authors
/persons/resource/persons109074

Feng,  Y.
W7-X: Theory, Max Planck Institute for Plasma Physics, Max Planck Society;
W7-AS, Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons110320

Sardei,  F.
W7-X: Theory, Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons109226

Grigull,  P.
W7-X: Physics (PH), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons109914

McCormick,  K.
Stellarator Scenario Development (E5), Max Planck Institute for Plasma Physics, Max Planck Society;
W7-AS, Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons109170

Giannone,  L.
Experimental Plasma Physics 1 (E1), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons109609

Kisslinger,  J.
Experimental Plasma Physics 3 (E3), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons109474

Igitkhanov,  Y.
Stellarator System Studies, Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons110778

Wenzel,  U.
Plasma Diagnostics Group (HUB), Max Planck Institute for Plasma Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Feng, Y., Sardei, F., Grigull, P., McCormick, K., Giannone, L., Kisslinger, J., et al. (2003). Modelling of island divertor physics and comparison to W7-AS experimental results. Journal of Nuclear Materials, 313-316, 857-862. doi:10.1016/S0022-3115(02)01463-0.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0027-3EFC-B
Abstract
Extensive parameter studies have been carried out with the EMC3-EIRENE code. Major code predictions, namely the absence of high recycling prior to detachment, additional momentum losses associated with the specific island divertor geometry and the jump of the radiation at detachment transition have been verified by the W7-AS divertor experiments. Measurements and simulations are compared for high density, high power W7-AS divertor discharges and the physics related to rollover and detachment is discussed in detail. Local comparisons with the W7-AS experiment have been started with a new code version accounting for the real open-island geometry. Specifically, the observed asymmetric power unloading of the target plates at detachment transition could now be reproduced and explained. Agreement with the experiment was also found for the unexpected spatial structure of particle deposition by including classical E×B drifts into the code.