English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Concept of a Helias ignition experiment

MPS-Authors
/persons/resource/persons110819

Wobig,  H.
Stellarator Theory (ST), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons108570

Andreeva,  T.
Stellarator Dynamics and Transport (E5), Max Planck Institute for Plasma Physics, Max Planck Society;
Experimental Plasma Physics 3 (E3), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons108661

Beidler,  C. D.
Stellarator Theory (ST), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons109306

Harmeyer,  E.
Experimental Plasma Physics 3 (E3), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons109376

Herrnegger,  F.
Experimental Plasma Physics 3 (E3), Max Planck Institute for Plasma Physics, Max Planck Society;
Stellarator System Studies, Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons109474

Igitkhanov,  Y.
Stellarator System Studies, Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons109609

Kisslinger,  J.
Experimental Plasma Physics 3 (E3), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons110071

Nührenberg,  C.
Stellarator Theory (ST), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons110665

Turkin,  Y.
Experimental Plasma Physics 3 (E3), Max Planck Institute for Plasma Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Wobig, H., Andreeva, T., Beidler, C. D., Harmeyer, E., Herrnegger, F., Igitkhanov, Y., et al. (2003). Concept of a Helias ignition experiment. Nuclear Fusion, 43, 889-898. doi:10.1088/0029-5515/43/9/313.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0027-2E06-C
Abstract
The Helias ignition experiment is an upgraded version of the Wendelstein 7-X experiment. The magnetic configuration is a four-period Helias configuration (major radius 18 m, plasma radius 2.0 m, B = 4.5 T), which presents a more compact option than the five-period configuration. Much effort has been focused on two versions of the four-period configuration. One option is the power reactor HSR4/18 providing at least 3 GW of fusion power and the second is the ignition experiment HSR 4/18i aiming at a minimum of fusion power and the demonstration of self-sustaining burn. The design criteria of the ignition experiment HSR 4/18i are the following: The experiment should demonstrate a safe and reliable route to ignition; self-sustained burn without external heating; steady-state operation during several hundred seconds; reliability of the technical components and tritium breeding in a test blanket. The paper discusses the technical issues of the coil system and describes the vacuum vessel and the shielding blanket. The power balance will be modelled with a transport code and the ignition conditions will be investigated using current scaling laws of energy confinement in stellarators. The plasma parameters of the ignition experiment are: peak density 2–3×1020 m-3, peak temperature 11–15 keV, average beta 3.6% and fusion power 1500–1700 MW.