Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Neutron field in the Wendelstein-7-X hall

MPG-Autoren
/persons/resource/persons109376

Herrnegger,  F.
Experimental Plasma Physics 3 (E3), Max Planck Institute for Plasma Physics, Max Planck Society;
Stellarator System Studies, Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons109534

Junker,  J.
Theory, Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons110770

Weller,  A.
Stellarator Scenario Development (E5), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons110819

Wobig,  H.
Stellarator Theory (ST), Max Planck Institute for Plasma Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Herrnegger, F., Junker, J., Weller, A., & Wobig, H. (2003). Neutron field in the Wendelstein-7-X hall. Fusion Engineering and Design, 66-68, 849-853. doi:10.1016/S0920-3796(03)00364-8.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0027-2DFF-4
Zusammenfassung
The (d,d)-reactions between the deuterons will produce neutrons with an average energy of 2.46 MeV which are shielded by the concrete wall of 180 cm thickness in case of the Wendelstein 7-X experimental device. The knowledge of the neutron field inside the hall is of special interest for the various diagnostic facilities including neutron diagnostics. The dependence of the neutron flux on the boron concentration as used for the concrete wall and on the thickness of the concrete wall was analyzed. In the interior region of the torus, the flux of fast neutrons (number of neutrons per MeV cm²) is two orders of magnitude higher than in the region close to the concrete wall. By doping the concrete walls with 700 ppm of boron the almost homogeneous flux of thermal neutrons is reduced by a factor of about 30 compared to the case of no boron-admixture.