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In this article, a model for GAEs in a screw pinch plasma geometry is presented. The wave
equations are derived from an ideal MHD model with corrections for finite frequency [1]. An-
alytical and numerical solutions of these equations, applied to parameter sets approximating

the TORTUS Tokamak and the Wendelstein WvII-AS Advanced Stellarator, are presented and
discussed.

1 Ideal MHD Equations with Finite Frequency Corrections

The MHD equations used in this model are:

p %‘ti = JxB FLUID EQUATION OF MOTION
ARG 1 /0 ]
E+oxB = (]xB) OHM’S LAW
Nede
(1)
V xB = po] AMPERE’S LAaw
VXE == %—f FARADAY’S LAW

The plasma is assumed to be perfectly conducting, that is, to not have any ohmic resistiv-
ity. The plasma particles are also assumed to be “cold”, that is, to have no thermal motion.
There is hence no kinetic pressure. Ignoring the plasma pressure means that the Slow Wave
will not appear in this model.

Also neglected in this model are electron parallel dynamics. This is equivalent to assum-
ing that the electrons have no inertia, or in other words, that the electrons are massless,
me — 0. The effect of this term on the plasma model is discussed by Cross and Miljak [2].
Neglecting the electron mass means that the Surface Quasi-Electrostatic Wave will also not
appear in this model. While this wave mode is still relevant to the frequency range which
will be under consideration, the propagation of these localized surface waves does not affect
the global nature of the GAEs and is therefore neglected.
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Perturbations of the form in equation (1.2) are introduced to the model and the equations
linearized. The following perturbation expansions are made:
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where b, 7, €and ¥ are wave-associated perturbations.

It is assumed that there are no steady-state electric fields acting on the plasma (Eo=0)
and that the plasma is static (7 = 0). The MHD formulation requires that we neglect density
perturbations so as to remain consistent with the continuity equation

on

5+ V.m9) =0 ®)

where n represents the particle density.

2 Plasma Equilibrium and Screw Pinch Geometry

The plasma in considered in the cylindrical approximation and is assumed to have a mag-
netic field configuration with a poloidal component By(r) and an axial component B, (r) but
no radial component B, (r) = 0. Thus, the equilibrium magnetic field can be expressed as

By = OF + By(r)f + B,(r)Z @
where unit vectors in the three directions are given by 7, § and Z.

A perfectly conducting wall [3] surrounds the plasma at a radius of r = 4. This gives us a
set of boundary conditions to be satisfied at the plasma edge, which are

—

VX = 0
o o 2]
V-b|r=a = 0 ()

where &and b are wave-associated electric and magnetic field perturbations.

Non-perturbation (equilibrium) quantities are assumed to be independent of the poloidal
coordinate @ and the axial coordinate z; instead functions solely of the radial coordinate r.
The length of the cylinder is 27 R, where R is the major radius of the torus which this cylinder
approximates, which means that the cylinder has the same length as the axis of a torus with
a major radius of R. Periodic boundary conditions are assumed in the z-direction, that is, all
quantities are assumed to be identical on the surfaces at z = 0 and z = 27 R.

All global perturbations are, on the other hand, periodic in both the poloidal and axial
directions, so the perturbations in (2) can be expressed as

F® = f(@) expli(—wt + k.8)] = f(r) exp [i(~wt + mo + %z)] ©)




where the integers m and n are respectively the poloidal and toroidal mode numbers. The
. (m,n) wave mode has m nodes in the poloidal direction and # nodes in the toroidal (axial)
direction.

In this expansion for all global perturbations, wave modes with positive poloidal mode
numbers m propagate in the + direction and those with negative m propagate in the —8 di-
rection. Similarly, perturbations with positive toroidal mode numbers n propagate in the +Z
direction and those with negative n propagate in the —Z direction. The standard right-hand
cylindrical coordinate axes have been adopted, where 7 x § = Z.

The plasma is assumed to have electron density and current density profiles, respectively
n(r) and Jo(r), which also vary solely in the radial direction. These profiles are specified input
parameters to the model. Static Equilibrium is also assumed, that is, that the plasma satisfies
the conditions given by

fé X -’n =0 FORCE BALANCE
VxBy = pojo AMPERE'S LAW 7
V.Bp = 0 DIVERGENCE OF B

which results in By(r) and B,(r) profiles which are given by
Sl S e
Bo(r) = 2 [ o).z rar

i e ®)
B,(r) = B,(0) — po A Jo(r).6 dr

and the further condition that Jo(r).7 = 0. B,(0) is an input parameter.

A further assumption is that the plasma contains just a single ion species and is electrically
neutral, so the ion density profile is related to the electron density profile simply by

qini(r) = Gene(r) ©
where g; and g, are the ion and electron charges.
The local safety factor is defined in cylindrical geometry as

_ 1B

and the input of an equilibrium g(r) profile is also possible, to allow for the use of equilibria
calculated by another program, for instance, a Grad-Shafranov solver. Stellarator rotational
transform profiles ¢(r) can be input by using the relation g(r) = 1/¢(r).
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Figure 1: Screw Pinch geometry. The cylindrical (7,8, Z) coordinates are rotated to obtain
a new system (7, ||, L) where || is aligned along the background magnetic field By. The
length of the plasma column is 27 R, where R is the major radius of the toroidal plasma
being modelled, and the radius of the column is 4, the minor radius of the plasma.
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Figure 1 shows a plasma model in screw pinch geometry. From our cylindrical system, the
radial coordinate r is retained, but normalized to the minor radius @ with a new radial co-
ordinate x = r/a. A unit radial vector is denoted by ¥. In addition, the coordinate axes are
rotated so that one of them, ||, is now parallel to the local background magnetic field By. A

unit “parallel” vector is given by Il = Bo/|By|. To keep the coordinate system orthogonal, a
third coordinate, L, is chosen such that a unit “perpendicular” vector is given by L = || x %.

In this geometry, the wave vector components are given by

k.Bp = kBo = —By(r) + +B:(r)
r R
T = m; n m (11)
(k x Bo)r = TBU = - EBB(V) + -;B,_(r)
and the wave magnetic field components are given by
b.By = By = beBe(r) + buBa(r) >
(b x Bo)y = biBo = —b:Bg(r) + byB.(r)

3 Linearized Wave Dispersion Relations

The MHD equations (1) are cast in the screw-pinch coordinate system and all terms involv-
ing Jo and 7 are eliminated. For cleanliness, the quantities p = iwb and £, = e, /a are intro-
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duced. After some algebraic manipulation of the linearized equations, Ballico and Cross [4]
. obtain a set of two coupled first-order partial differential equations

dp
3_;[ = - Ty - D
o€ (R
L
e = Iipy + Ty
where
1 m; B‘;’
y Rl (- FT O A AT
1 x[FO(0+K|[0)+B%]
T, = K + H
a1 3 fi (14)
3 = 25
1 my 32
T, = ~|™ _ 2
4 . [Fo (Go + K So) Bg]
and o i
K?‘\ - ‘FU_GU
B
1 /m na
G = (38 + &%)
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Go = QA¢ — DK
So = Dy — 220
2
S
Hy = E?(FuDo—Aoso—2GoKu) (15)
02N
g it
1 (. B, 9B, Bng)
o My ?(Bzﬁx 7 L
N o Hogiami
m;
{1
Wei
L]
Wei = m;

The eigenvector of the solution (p;, £, ) in the equations (13) gives us the wave fields b
and e, . The other wave fields can be calculated from solving Ampere’s Law and Faraday’s
Law (1). Transformation back into standard cylindrical (r,6,z) geometry can be done us-
ing (12).

The term labelled K, in (15) represents the wave vector in both directions non-parallel to




the background field. The equation

B-G
R

is in fact the wave dispersion relation for MHD waves in this model.

(16)

K = (k- kpa® =

3.1 The Alfvén Resonance

The wave dispersion relation (16) has a resonance when F = 0. This resonance is the Alfvén
resonance, and it occurs at the Alfvén frequency

" _ |k (%) |va(x) ~ Ik 17)
) /It R () hgieale) (
where Bo(x)
_ 0lXx
PAW) = ) =
is the Alfvén speed.

The Alfvén resonance is mathematically a spatial non-square-integrable logarithmic sin-
gularity and in this simple model without damping, it manifests itself as the infinitely thin
layer corresponding to the surface where the condition of resonance (17) is satisfied giving a
perpendicular wave vector k; = oo. On this surface, an Alfvén wave with k; = oo will have
the same frequency w and parallel wave vector k; as the Fast Wave. The Fast Wave propa-
gates with k5 > 0 on the high-density side of this surface, and the Alfvén wave on the low
density side, in a narrow layer where k¥ € (0,00).

In cylindrical configurations, the Alfvén resonance results in a wave solutions for each
wave mode (m,n) over a continuous range of frequencies, the Alfvén continuum spectra. As-
suming that kj is constant for the time being, Alfvén resonance surface moves continuously
within this range with increasing frequency w, from the region of small v4 to the region of
large v,4. This often, but not always, corresponds to moving from the centre of the plasma,
where the mass density is high, to the edge, where the mass density is low. Now allowing k|
to vary, but with k, still constant as it is determined entirely by the toroidal mode number 7,
we may get continua which have minima at different locations in the plasma due to the vari-
ation of kj with the radial coordinate x. Continua may have minima at zero wave frequency
w=0.

In non-cylindrically-symmetric plasma configurations, breaks in the symmetry in the po-
loidal direction lead to coupling between the poloidal mode numbers m. Breaks in the sym-
metry in the toroidal direction lead, on the other hand, to coupling between the toroidal mode
numbers .

Approximate two-dimensional (tokamak) equilibria can be calculated using an asymp-

totic expansion [5] in terms of the inverse aspect ratio € qﬁfa / R, where a is the effective
plasma minor radius and it is assumed that € < 1. The poloidal flux function is expanded

p(x,0) & / By.dA = o(x) + ¢1(x,0) + v2(x,0) + vs(x,0) + ... (19)
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where for each integer value ¢, ¥(x,8)/vo(x) = O(e‘). The term v)(x) corresponds to the
_ cylindrical flux function.

Solving the ideal MHD equations in this flux system and retaining only the vy and 1
terms gives us dispersion relations for the coupled Alfvén continua of the modes (m,n) and
(m + 1,n), dispersion relations with “toroidal corrections”. Fu and Van Dam [6] give the re-
sult of this calculation as

2 12
||m |m+1i\/ lm — ||m+1) +962x2ki|mk||m+l

®) 2(1— %€2x2)

(20)

bsq

wA:i:( x) =

At the surface at a radial distance of xp from the magnetic axis, where the local safety
factor g(xo) = (m + 3)/n, the cylindrical Alfvén continua of the modes (m,n) and (m + 1,n)
cross each other. On tl'us surface, the parallel components of their wave vectors are related by
Kjm(x0) = —kjjm+1(x0) and coupling of the two continua results in an “avoided crossing”, a
gap of width 6w = way — wa- = 2exg|kjm (¥0) v (x0)]-

Now, retaining only the 1y and ¥, terms in equation (19), we obtain the dispersion rela-
tions for the coupled Alfvén continua of the modes (m,n) and (m + 2,n), dispersion relations
with “elliptical corrections”. Betti and Freidberg [7] give the result of this calculation as

ki + Kipn = \/( i~ Kimin)? + 16HZE K

2 i
whs(¥) = V(%) 2 —4E7) (1)
where H' = 9H /0x, the elliptical distortion H satisfies the equation
B2
é (Bde) —3%g = @)
dx dx x
H(0)=0 H(1) = —a(k —1)/2

and the plasma elongation & def (cross-sectional area) /ma?.

At the surface at a radial distance of xp from the magnetic axis, where the local safety
factor g(xp) = (m + 1) /n, the cylindrical Alfvén continua of the modes (m,n) and (m + 2,n)
cross each other. On this surface, the parallel components of their wave vectors are related by
kijm(%0) = —kjjm12(x0) and coupling of the two continua results in an “avoided crossing”, a
gap of width dw = wpy —wa- ~ 2H'(xp)va(x0)/q(x0) R.

In general, retention of the term 1, along with the cylindrical term 1y and solution of
the MHD equations with these two terms in the expansion (19) results in a system where the
modes (m,n) and (m+ £,n) are coupled. If a surface satisfying q(xo) = (m + 5)/n exists
within the plasma (for some x € [0,1]), the cylindrical continua will cross at the radial po-
sition x = xp, where the common Alfvén frequency of the two modes is given by

UA(JC(])Q
s 23
Zq(JCo)R @)

If 1¢ # 0, coupling of the two continua leads to a gap, whose width dw is determined by the
relative magnitude of the non-cylindrical term 1, /1.

LA =
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3.2 Discrete Eigenmode Solutions: GAEs

In a homogeneous plasma, elimination of the £, terms from the system of differential equa-
tions (13) using Faraday’s Law (1) renders a single second-order partial differential equation

62P" 1 apu m?
72 Tiox T KTz m=0 24

which is consistent with the relation V.h=0.

We place a condition on our equilibria, that m, varies very slowly with x at the axis of
symmetry, that is, that the plasma is approximately homogeneous near x = 0. Equation (24)
is then the Bessel differential equation, which has the solution

Py = Po Jm(Kpx) when K3 >0 (25)

where py is an arbitrary amplitude factor, J,; is the Bessel function of degree m and at the axis
of symmetry x = 0, m; = m, the poloidal wave number (from equation 11).

We thus now have a condition for pj at x = 0. From equation (5), we have a second bound-
ary condition, that for £, at the wall x = 1, namely, £, (x)|x=1 = 0. Thus we now desire the
solution to a set of two coupled differential equations (13), satisfying one boundary condition
at x = 0 and another boundary condition at x = 1. This belongs to a class of mathematical
problems known as two point boundary value problems [8].

For a wave mode (m, 1), there is a continuous spectrum of wave solutions, corresponding
to the Alfvén continuum of the wave mode, for frequencies within this continuum. If this
continuum does not extend to wave frequency w = 0, there usually exists a series of discrete
eigensolutions to the partial differential equations (13) at frequencies just below the lower end
of the Alfvén continuum. These eigensolutions, upon examination of their eigenvectors, are
cavity oscillations of the entire system subject to its boundary conditions, global eigenmodes
of the Alfvén wave. These are the Global Alfvén Eigenmodes (GAEs).

In cylindrical geometry, Alfvén continua of modes sharing toroidal mode numbers n do
not couple to each other. Differential equations featuring two-dimensional “correction” terms
based on the asymptotic expansion (19) have not been included, so this model is not able to
find the “gap modes” such as the Toroidal Alfvén Eigenmodes (TAEs) and Elliptical Alfvén
Eigenmodes (EAEs). Equation (23) can, however, be used to obtain a reasonable approxima-
tion for their frequencies.

Absence of kinetic pressure means that the Beta-induced Alfvén Eigenmodes (BAEs) also
do not feature in the spectrum of eigensolutions of this model.

The structure of the Alfvén continua of various wave modes in the screw pinch geometry
canbe determined in this model using equation (17). Possible coupling between different con-
tinuum layers is also investigated using equations (20) and (21). A search is then carried out
for GAEs at frequencies just below the minimum Alfvén frequency in the plasma. This is done
by seeking a solution to the two point boundary value problem in this frequency range, us-
ing a shooting method involving a standard Fourth Order Stepsize-Controlled Runge-Kutta
numerical integrator and a Brent’s Method root finder.




Major radius R = 0.44m
Minor radius a < 0.11m
Toroidal magnetic field | B, < 13T
Toroidal plasma current | I, < 40 kA
Ion temperature L = 100 eV
Electron temperature T, < 300eV
Electron density ne < 4x109m3
Pulse length T E 40 ms

Table 1: Vessel and plasma parameters of TORTUS.

4 TORTUS High-Current Plasmas

The TORTUS Tokamak is a small plasma fusion research device, designed and built in the
Plasma Physics Department, University of Sydney, New South Wales, Australia. Table 1
shows a summary of the vessel and plasma parameters of TORTUS. The maximum values
have not been observed simultaneously.

4.1 Input Parameters

In this one-dimensional model, the TORTUS plasma is assumed to have a major radius of
R = 0.44 m, giving a length of the screw pinch plasma of 27 R = 2.76 m, and a minor radius
of 4 = 0.10 m. Perfectly conducting walls surround the plasma at the radial position # = g,
where the boundary conditions (5) are applied. These values of R and a give an inverse aspect
ratio parameter of € = 0.227 in the asymptotic expansion (19) for approximate two-dimen-
sional equilibria. The TORTUS plasma is assumed to have a circular cross-section, thus all the
expansion terms ¥y = 0 for £ > 2 in (19).

A fully-ionized hydrogen plasma is modelled here, with a total plasma current of
I, = —36.5 kA, an on-axis equilibrium magnetic field of B,(0) = 1.2 T and an on-axis elec-
tron density of #,(0) = 2.4 x 10" m~3. The negative sign on I, indicates that the magnetic
field and the plasma current are in the opposite directions.

The plasma current is assumed to have a parabolic-squared density profile,
satisfying Jo(x) = Jo(0)[1 —2x? + x*]. Integration over the entire cross-section, where

I, ] 02“ do ful x dx Jo(x) gives a central value of Jo(0) = —3.49 x 108 Am~2. Assumption of
the static equilibrium conditions (7) gives a central safety factor of 4(0) = —1.25 and an edge
value of g(1) = —3.74. Figure 2(a) shows radial profiles for the current density |Jo(x)| and
safety factor |q(x)|.

The electron density profile is assumed to be parabolic in shape, satisfying
ne(x) = 1,(0)[1 — 0.99x%]. The ion density profile is assumed to be given by the condition of
electrical neutrality (9). The edge density is chosen to be non-zero and set to 1% of the central
value, 17,(1) = 0.01r,(0). This is done so as to keep the Alfvén speed (18) finite. Figure 2(b)
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Figure 2: Equilibrium profiles used for the model of TORTUS plasmas: (a) the current den-
sity |Jo(x)| [x] and safety factor |g(x)| [A] profiles and (b) the electron density profile n,(x).
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shows the electron density profile n,(x).

4.2 Alfvén Continuous Spectra

Figure 3 shows the Alfvén continua for modes with toroidal mode numbers n =0, n =1,
n =2 and n = 3. The radial position x is plotted on the horizontal axes, and the local Alf-
vén frequency wy4 (x) /27 on the vertical axes. The local Alfvén frequency at a particular layer
x = xp corresponds to the frequency w4 (xo) at which the Alfvén resonance layer would occur
at that radial position.

The graphs in the left column are cylindrical continua, calculated from the expression for
the Alfvén resonance in cylindrical geometry (17), and the graphs in the right column show
approximate two-dimensional continua, calculated from the asymptotic expansion (19). In
the cylindrical continua, the m mode numbers are indicated on each dispersion curve. In
these cylindrical (and cylindrical-like) calculations, the modes (m,n) and (—m, —n), always
share the same resonance layers.

The Alfvén continuum structure of the TORTUS plasma here is fairly typical for plasmas
with relatively high shear in the g(x) profile. There are, with the exception of the odd nega-
tive helicity mode or two, gaps below the lower edge of the Alfvén continuum only for modes
with positive helicities. If the boundary conditions (5) can be satisfied at frequency inside this
gap, a GAE with eigenfrequency wgap < min{w4(x)} the corresponding (m,n) mode
numbers will exist. Such GAE solutions will be discussed in the next section.

Negative helicity modes, on the other hand, have steep Alfvén continua which often ex-
tend down to zero frequency, w4 (xp) = 0 at some xj € [0, 1]. These modes tend to cross each
other at some point in the plasma cross-section. Toroidal coupling leads to avoided crossings
and gaps opening where neighbouring continua couple to each other. In this model where
Yy = 0 for all £ > 2, the only gap which opens is the TAE gap between the modes (1, 1) and
(m +1,n). EAE gaps and gaps for higher-order non-cylindrical Alfvén eigenmodes do not
appear.

The width of the TAE gaps is not very large. For example, the gap between the (-2,1) and
(3,-1) modes at x ~ 0.8 has a width of dw = 2exg|ky, (x0)va(x0)| ~ 80 kHz. The presence of
this gap in the continuum does not automatically ensure the presence of a TAE. A TAE will
occur only if different poloidal harmonics can couple to produce a global mode which sat-
isfies the boundary conditions (5), with a frequency in this gap wrag € (wo — dw,wp + dw).
Conversely, several discrete TAE may also occur in this gap, should the boundary conditions
be satisfied by several discrete eigensolutions.

Figure 3: (overleaf) Alfven continua for TORTUS. The graphs in the left column show
the cylindrical continuum layers, those in the right column show the approximate two-
dimensional coupled continuum layers. Separate graphs are plotted for different # num-
bers, and m numbers are marked close to the start of the curves.
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Klz/o2 Profile : tortus, (m,n)=(1,1)
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Figure 4: The radial profile of the K3 parameter for the (1,1) mode in TORTUS. Three pro-
files are shown for waves at different frequencies, one at the GAE resonance frequency,
one at a frequency below the lower edge of the Alfvén continuum and one at a frequency
within the Alfvén continuum.

4.3 Discrete GAE Solutions

The radial profile of the non-parallel wave vector K3 is shown for the (1,1) mode in Figure 4.
Three radial profiles are shown, for a frequency well below the lower edge of the Alfvén con-
tinuum frequency of this mode (min{f4(x)} =3.42 MHz for this mode), at a frequency
within the Alfvén continuum and at a frequency just below this lower edge where a solution
of the linearized wave dispersion relations (13) exists satisfying the boundary conditions (5).
This solution of the eigensystem is interpreted as a GAE and will be discussed in the following

paragraphs.

" The curves in Figure 4 are typical for TORTUS Alfvén wave modes. At frequencies far be-
low the Alfvén resonance, there is little propagation in either of the directions non-parallel to
the magnetic field. If K3 gets to be large over a significant proportion of the plasma radius, a
global eigenmode of the Alfvén wave, satisfying the boundary conditions, can exist: a stand-
ing wave in both the radial and azimuthal directions is set up due to reflections at the vessel
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GAE Discrete Spectrum: tortus
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Figure 5: The discrete spectrum of GAEs in TORTUS. The mode n number is plotted on the
horizontal axis and the mode m number is indicated on the graph. Modes with identified
GAEs are marked with a dot (e), and where no GAE was found numerically, the lower
edge of the Alfvén continuum is indicated with a cross (x).

walls, leading to a cavity resonance. Typically, these global modes appear when the Alfvén
resonance condition is almost satisfied over most of the plasma cross-section.

Moving a little further up in wave frequency, we run into the Alfvén continuum. At the
wave frequency of f = 3.50 MHz shown in Figure 4, the Alfvén resonance condition (17) of
the (1,1) mode is satisfied at the layer at a radial position of x = 0.520. At this layer, a logarith-
mic singularity occurs in the dispersion relation and the non-parallel wave vector Ky — =co.
Inclusion of wave damping into the model (eg. resistivity) would result in a finite value for
K, at this layer and a study of the wave dynamics reveals that the wave solution on the high-
density side of the layer (in this case: the left-hand side) is a Fast Wave; and that on the low-
density side is an Alfvén Wave. Mode conversion between these two wave modes at this layer
manifests itself in the form of the Alfvén resonance.

A search for GAEs at frequencies below the lower edge of their corresponding Alfvén con-
tinua reveals a spectrum of GAEs in the TORTUS plasma. Figure 5 shows the discrete spec-
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Figure 6: Wave perturbation magnetic fields of selected TORTUS GAEs.
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trum of GAEs in TORTUS, where the wave frequency is plotted on the vertical axis, the mode

-n number is plotted on the horizontal axis and the wave m number is indicated on the graph.
Positively identified GAEs are denoted by a dot (e) on the graph. In many cases, no GAE was
found below the lower edge of the Alfvén continuum. This could either mean that no GAE
exists, or that the GAE lies too close to the Alfvén continuum for its frequency to be deter-
mined numerically. The lower edges of the Alfvén continuum of these modes is indicated in
the graph by a cross (x), indicating the likely frequency for a GAE, if one does indeed exist.

The wave perturbation fields can also be determined from this model. Figure 6 shows the
magnetic field components of selected TORTUS GAE. Comparison of the wave fields to their
the K2 profile, for example, the (1,1) mode with Figure 4, shows that the perturbation fields
of a mode are peaked where the non-parallel wave vector K3 is large.

5 Wendelstein WVII-AS Shot #11474

The Wendelstein WVII-AS is a medium-sized plasma fusion research device, designed and
built at the Max-Planck-Institut fiir Plasmaphysik (IPP) in Garching bei Miinchen, Bayern
(Bavaria), Germany. Table 2 shows a summary of the shows a summary of the vessel and
plasma parameters of Wendelstein WVII-AS. The maximum values have not been observed
simultaneously.

The Wendelstein WVII-AS Advanced Stellarator often operates within the vicinity of a
rotational transform value of ¢ ~ %, with GAEs often observed in experiments when ¢ Z %
The shot #11474 is a typical Wendelstein WVII-AS discharge in this parameter regime and is
taken here as being representative of typical Wendelstein WVII-AS ¢ % 1 plasmas. The effect
of small changes in the ¢-profile is also briefly discussed. Previous observations and calcula-
tions [10] have been performed in similar plasma conditions and provide a comparison for
the validity of this model.

Major Radius R = 20m
Effective Minor Radius A 0.18 m
Toroidal Magnetic Field By, o5 064 = 20T
Rotational transform (on-axis) | ¢« = 025 - 0.67
Ion temperature Trur<t 2.0keV
Electron temperature Tethud 4.0 keV
Electron density ny  Lr - 3100 mnd
Energy confinement time T 'K 40 ms
Average kinetic pressure B < 1.8%

" Table 2: Plasma parameters of Wendelstein WVII-AS.
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5.1 Input Parameters

In this one-dimensional model, the Wendelstein WVII-AS plasma is assumed to have a major
radius of R = 2.00 m, giving a length of the screw pinch plasma of 2r R = 12.6 m, and a minor
radius of a = 0.18 m. Perfectly conducting walls surround the plasma at the radial position
r = a, where the boundary conditions (5) are applied. These values of R and a give an inverse
aspect ratio parameter of € = 0.090 in the asymptotic expansion (19) for approximate two-
dimensional equilibria.

A fully-ionized hydrogen plasma is modelled here, and the plasma equilibrium is interpo-
lated from the TRANS database [9]. The equilibrium is interpolated from the four pre-calcu-
lated equilibria in this database whose parameters lie closest to the settings used in the actual
experimental discharge Wendelstein WVII-AS #11474. The interpolated equilibrium on-axis
field is By = 2.54 T and the corresponding g-profile is shown in Figure 7(a). The electron den-
sity profile used is identical to that used in the previous calculations [10] and shown in Fig-
ure 7(b). The somewhat unrealistic cusp at x = 0 in this profile has been retained for consis-
tency with the previous work. The profile was obtained from a single-point Thomson scat-
tering diagnostic over a series of almost identical shots. To interpolate between the discrete
points, fourth-order polynomials were fitted to them using a Singular Value Decomposition
(SVD) algorithm [8].

5.2 Alfvén Continuous Spectra

Figure 8 shows the Alfvén continua for modes with toroidal mode numbers n =0, n = -1,
n= —2and n = —3. These curves have been calculated in cylindrical geometry. The radial
position x is plotted on the horizontal axes, and the local Alfvén frequency w4 (x)/27 on the
vertical axes. The local Alfvén frequency at a particular layer x = xg corresponds to the fre-
quency wx (xp) at which the Alfvén resonance layer would occur at that radial position. As
was in the case of TORTUS Alfvén continuous spectra, modes with mode numbers (m, ) and
(—m, —n) have coincident continuum layers.

The Alfvén continuum layers of Wendelstein WVII-AS plasmas have a very different
overall structure to those in tokamak plasmas. Due to the very low magnetic shear, as can be
seen in the very flat g-profile in Figure 7(a), the parallel wave vector k(x), given by (11), re-
mains almost constant over the entire plasma cross-section, unlike the situation in tokamaks,
where this term varies quite substantially for negative-helicity modes (where m and n have
opposite signs). Thus, the continuum layer defined by the Alfvén resonance frequency wa(x),
as given by (17), reflects primarily the radial variation in the Alfvén speed v4(x). In stellara-
tor low-shear plasmas, this holds true for modes of both helicities, where in tokamaks, this
tends to be true only for modes of positive helicity.

In the gaps below the lower edges of these Alfvén continua, GAEs can exist, if the wave
dispersion relations have an eigensolution which satisfies the boundary conditions (5).
Such GAE solutions will be discussed in the next section.

The value of the k;(x) term is much smaller for modes of negative helicity than for modes
of positive helicity due to the opposing signs of m and n in (11). GAEs of negative helicity in
stellarators have very low frequencies, much like TAEs in tokamaks, hence the danger that
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Figure 7: Equilibrium profiles used for the model of Wendelstein WVII-AS #11474.
(a) The safety factor profile g(x) and (b) the electron density profile n,(x). Fourth-order
polynomials have been fitted to the discrete points.

18




(x10%) Alfvén continua : 11474, n=0 (x10%) Alfvén continua : 11474, n=—1

5 S S S i S 5 b

4 4 ]

& 1 & ]
= ] X 3 ]
= - < t
= = L
3 3
u ] [
= - = 2 =
= N

1 . 1 ]

ol 1 1 1 1 0 P T 1 M L.

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

x = rggfa X = rg/o

(x10%) Alfven continua : 11474, n=-2 (x10%) Alfvén continua : 11474, n=-3

5 5 —— s
& E
~ I3
~ ~
= )
3 F
] [
—~ -
= x
= =

1 1 1 i i ol s i n 1 i L u L 1 1 1 1

e

.0 0.2 0.4

0.6 0.8 1.0
x = rey/0

0.2 0.4 0.6
X = fen/a

08 1.0

Figure 8: Alfvén continua for Wendelstein WvII-AS #11474. These curves have been cal-
culated in cylindrical geometry and the curves for the (m, —n) mode and the (—m, n) mode
are coincident.

they might be de-stabilized by energetic particles in the plasma. GAEs of positive helicity,
like their tokamak counterparts, exist at much higher resonant frequencies, and are thus less
likely to be destabilized.

Where the Alfvén continuum layers intersect each other, such as for the (8,-3) and (9,-3)
modes in Figure 9 at x = 0.71 and f4 = 124 kHz, coupling between the modes in two-dimen-
sional geometry may lead to the opening of gaps. The gap has been calculated using the as-
ymptotic expansion (19) and is relatively small due to the large aspect ratio of Wendelstein
WVII-AS.

As can be seen from the toroidal evolution of the Wendelstein WVII-AS plasma in Fig-
ure 7.3, the non-cylindrical terms 1),/ in the asymptotic expansion (19) will be of non-
negligible amplitude for much larger values of £ than would be the case for a typical tokamak
plasma. Approximate two-dimensional equilibria could be computed by taking some sort of
“average” plasma cross-section.This will be further discussed in the next chapter, where a
two-dimensional model is presented. The correct treatment of this problem would be to de-
velop a three-dimensional model for the Alfvén continua.
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Figure 9: Toroidal coupling between Wendelstein WvII-AS modes. A gap occurs, but its
size is small due to the large aspect ratio of Wendelstein WvII-AS.

5.3 Discrete GAE Solutions

The radial profile of the non-parallel wave vector K2 is shown for the (3,-1) mode in Fig-
ure 10. Three radial profiles are shown, for a frequency well below the lower edge of the
Alfvén continuum frequency of this mode (min{f4(x)} = 33.29 kHz for this mode), at a fre-
quency within the Alfvén continuum and at a frequency just below this lower edge where a
solution of the linearized wave dispersion relations (13) exists satisfying the boundary con-
ditions (5). This solution of the eigensystem is interpreted as a GAE and will be discussed in
the coming paragraphs.

These curves in Figure 10 are typical for Wendelstein WVII-AS Alfvén wave modes. Asin
the tokamak case, propagation is mostly parallel to the equilibrium magnetic field at frequen-
cies far below the Alfvén resonance. Global eigenmodes of the Alfvén wave occur when K%
gets to be large and the Alfvén resonance condition is almost satisfied over most of the plasma
cross-section.

Moving a little further up in wave frequency, we run into the Alfvén continuum. At the
wave frequency of f = 34.00 kHz shown in Figure 10(a), the Alfvén resonance condition (17)
of the (3,-1) mode is satisfied at two layers in the plasma, at the radial position of x = 0.465
and x = 0.671, as shown in Figure 10(b). At these layers, logarithmic singularities occur in the
dispersion relation and the non-parallel wave vector Ky — +o0. Inclusion of wave damping
into the model (eg. resistivity) would result in a finite value for K} at this layer and a study of
the wave dynamics reveals that the wave solutions on the high-v,4 sides of the layers (in this
case: for x < 0.465 and x > 0.671) are Alfvén Waves; and that on the low-v 4 sides (0.465 <
x < 0.671) are Fast Waves. Mode conversion between these two wave modes at these layers
manifests itself in the form of the Alfvén resonance.

Figure 11 shows the discrete GAE spectrum for Wendelstein WVII-AS #11474. The wave
toroidal mode number n is plotted on the horizontal axis, the wave frequency on the vertical
axis and the wave poloidal mode number m is labelled next to the points on the graph. As
before, a search is carried out for a solution to the linearized wave dispersion relation (13),
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Figure 10: The radial profile of w4 (x) and the K} parameter for the (3,-1) mode in Wendel-
stein WvII-AS #11474. Three profiles are shown for waves at different frequencies, one
at the GAE resonance frequency, one at a frequency below the lower edge of the Alfvén

continuum and one at a frequency within the Alfvén continuum.
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GAE Discrete Spectrum: 11474
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Figure 11: The discrete spectrum of GAEs in Wendelstein WVII-AS #11474. The mode
n number is plotted on the horizontal axis and the mode m number is indicated on the
graph. Modes with identified GAEs are marked with a dot (e), and where no GAE was
found numerically, the lower edge of the Alfvén continuum is indicated with a cross (x).

in the frequency band below the lower edge of the corresponding (m,7) Alfvén continuum.
Where a solution was found, it was identified as a GAE and plotted on the graph with a dot
(). Where no solution was found, the lower edge of the Alfvén continuum was taken as an
estimate for the GAE frequency, and plotted on the graph with a cross (x).

The wave perturbation fields can also be determined from this model. Figure 12 shows
the magnetic field components of selected Wendelstein WVII-AS #11474 GAE. Comparison
of the wave fields to their the K2 profile, for example, the (-3,1) mode with Figure 10, shows
that the perturbation fields of a mode are peaked where the non-parallel wave vector K3 is
large.
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Figure 12: Wave perturbation magnetic fields of selected Wendelstein WVII-AS #11474
GAEs.

5.4 Comparison of Wendelstein WVII-AS GAEs and Tokamak GAEs

As was pointed out in Section 5.2, the biggest difference between the Alfvén spectrum in TOR-
TUS plasmas, typical for tokamak plasmas, and typical Wendelstein WVII-AS plasmas is in
the structure of the Alfvén continuum layers. Recalling the Alfvén resonance condition (17),
and using the relations (11) and (18),

By

V top(x)

if g(x) remains close to being constant over the plasma cross-section, asis the case for the (3,-1)
GAE in Wendelstein WVII-AS shot #11474.

wa®) = ky(loale) = (m+ ) x pH(x) 26)

The first consequence of this is that gaps now appear below the Alfvén continua for modes
of both helicities, as can be seen by considering the parallel wave vector |k (x)|. In high-shear
systems, |k; (x)| is a function strongly dependent on x and will, in the case of negative he-
licity modes, quite likely have a zero somewhere in the range x € [0, 1]; remaining non-zero
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throughout the entire plasma column only for positive-helicity modes. In low-shear systems,
.such as many Wendelstein WVII-AS plasmas, |k (x)| depends only very weakly on x and is
unlikely, for modes of both helicities, to have a zero anywhere in the plasma cross-section.

In these gaps below the lower edges of the Alfvén continua, GAEs often appear. Because
gaps now exist for both helicities, GAEs of both helicities occur in Wendelstein WVII-AS.
However, while GAEs of positive helicity behave in a very similar fashion to their tokamak
counterparts, Wendelstein WVII-AS GAEs of negative helicity are significantly different.
Firstly, because m and n have opposite signs, the term |k (x)| can be very small but still
non-zero. GAEs of very low frequency may thus arise, such as the (m,n) = (3,—1) GAE at
f = 33.02 kHz in Wendelstein WVII-AS #11474; compared to a frequency of f = 956.4 kHz
for the (-3,-1) GAE. The lowest frequency GAEs in Wendelstein WVII-AS are those with the
smallest k. For instance, the (3,-1) mode here, k) ~ (m/q +n)/R S2x1072m~!, where in
the non-parallel plane, (k2 + k2 )!/? ~ 7 m~! atits maximum, as seen in Figure 10. These GAEs
are Alfvén waves with wave vectors k almost completely perpendicular to the equilibrium
field Bo.

Alfvén continuous spectra in most families of dispersion curves sharing a common toroi-
dal mode number n do not necessarily have a member which extends to zero frequency, as can
be seen in Figure 8; a situation true in general only for the n = 0 family in tokamaks. Thus, the
lowest-frequency GAE of that family, for instance, the (3,-1) mode of the n = —1 family, have
no Alfvén continuum layers below them, to which they could couple via poloidal asymme-
try. The main damping mechanism responsible for stabilizing tokamak GAE modes is thus
not present in Wendelstein WVII-AS plasmas.

Due to their frequency range and damping characteristics, these Wendelstein WvII-AS
negative-helicity GAEs are in many aspects more similar in nature to tokamak TAEs and EAEs
than to tokamak positive-helicity GAEs.

Plasma waves can interact with particles in the plasma via resonant interactions. For in-
stance, waves could transfer energy to particles via Landau damping, and particles to waves
via inverse Landau damping. It is feared that these low-frequency global eigenmodes of the
Alfvén wave could be destabilized by fast particles, such as fusion-born a-particles and NBI
ions. The wave modes could then trigger anomalous diffusion, affect the plasma equilibrium
and lead to poor confinement of these fast particles. This would result in increased heat load
on the vessel walls, plasma cooling and energy losses.

5.5 Effect of Small .-Profile Variations

It has been experimentally observed that slight variations to the magnetic configuration can
either change the frequency of a GAE or make it disappear altogether. Here, we perform a
case study on the (3,-1) mode in Wendelstein WVII-AS #11474 to investigate this effect.

Figure 13(a) shows three :-profiles returned by interpolation from the TRANS database.
The profile used for modelling Wendelstein Wv1I-AS shot #11474 is shown, along with pro-
files for equilibria with .-profiles lying respectively a little higher than and a little lower than
the the #11474 profile. The rational surface at . = 1 is indicated with a dotted line. TRANS
does not return any equilibria containing low-order rational surfaces, so the equilibrium ly-
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ing closest to . =  was chosen.

Figure 13(b) shows the Alfvén continuum profiles of the corresponding Alfvén continua
for the (3,-1) mode in the three equilibria. The frequencies of the corresponding GAEs, where
found, are indicated by the dotted lines directly below the continuum layers. '

Increasing the value of ¢ has the effect of widening the gap and thus raising the frequency
of the GAE which lies within it. Lowering the value of . makes the gap smaller and lowers
the corresponding GAE frequency. In the case of the ¢ & } curve shown here, the gap virtually
closes, and the GAE can no longer exist.

5.6 Comparison with Previous Work

In [10], Weller et. al. report observations of the (3,-1) GAEs in Wendelstein WVII-AS in plas-
mas very similar to the #11474 configuration at a frequency of approximately f ~ 36 kHz in a
Hydrogen plasma, and f = 25 kHz in a Deuterium plasma. A Gyrofluid model for GAEs, as
reported in the same paper, returned the frequencies of f ~ 35 kHz and f = 25 kHz, respec-
tively, for these modes.

The calculated frequency of f = 33.0 kHz obtained here is in good agreement with the
measured value, and the discrepancy can be attributed to uncertainties in the exact ¢- and #,-
profiles. Assuming the the GAE frequency simply scales with the Alfvén speed v4 as given
in (18), the model presented here predicts a frequency of f = 23.3 kHz for the (3,-1) GAEin a
Deuterium plasma, again in good agreement with previous work.
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6 Wendelstein WVII-AS Shot #34077

Having established the validity of the one-dimensional model, we now wish to apply it to
an experimental situation. Here, we will concern ourselves only with the development of a
model for Wendelstein WVII-AS shot #34077.

6.1 Input Parameters

The shot #34077 is, similar to shot #11474, in the Wendelstein WVII-AS operating regime of
¢ 2 1, where GAEs have previously been observed and reported. However, the toroidal field is
in the “half field” (By ~ 1.25 T) configuration unlike the “full field” (B ~ 2.5 T) configuration
of #11474, and the plasma was a Deuterium plasma with Hydrogen NBI ions. In this model,
Z is taken to be 2, and the effect of the Hydrogen “impurity” is neglected.

Analysis of mode coupling between adjacent Alfvén continua was carried out for the
plasma cross-section at the elliptical (¢ = 36°) plane of WVII-AS. This was the location of an
antenna used for an active excitation experiment. Using the experimental settings for the coil
currents, an approximate equilibrium was interpolated from the TRANS database, which has
a major radius of R = 2.114 m and the minor radius of 2 = 0.173 m. The inverse aspect ratio
parameter is thus € = 0.0818.

Figure 14 shows the g-profile returned with the interpolated equilibrium and the #,-profile
returned by a multichannel Thomson scattering diagnostic. The g-profile does not extend to
the last closed flux surface, instead has been cut off at the radial position of the vessel’s inner
limiters, which determined the plasma size in this shot. Fourth-order polynomials have been
fitted to the discrete points points in both profiles using an SVD algorithm.

6.2 Alfvén Continuous Spectra

Alfvén continua for modes with toroidal mode numbers n =0, n = —1,n = —2 and n = -3,
calculated in cylindrical geometry, are shown in Figure 15. The basic structure of the continua
is very similar to that found in the case of Wendelstein WVII-AS shot #11474, apart from minor
differences caused by the slightly different equilibria.

Where crossing points occur between modes which share a common n number, the effect
of non-cylindrical geometric coupling can be studied, as before, using the asymptotic expan-
sion (19). This is illustrated in Figure 16.

6.3 Discrete GAE Solutions

Figure 17 shows the discrete GAE spectrum for Wendelstein WvII-AS #34077. The wave to-
roidal mode number 7 is plotted on the horizontal axis, the wave frequency on the vertical
axis and the wave poloidal mode number m is labelled next to the points on the graph. As
before, a search is carried out for a solution to the linearized wave dispersion relation (13),
in the frequency band below the lower edge of the corresponding (m,n) Alfvén continuum.
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2.9

Fitted TRANS q—profile #34077
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Figure 14: Equilibrium profiles used for the model of Wendelstein WVII-AS #34077.
(a) The safety factor profile q(x) and (b) the electron density profile #,(x). Fourth-order
polynomials have been fitted to the discrete points.
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Figure 15: Alfvén continua for Wendelstein WvII-AS #34077. These curves have been cal-
culated in cylindrical geometry and the curves for the (m, —#) mode and the (—m, n) mode
are coincident.
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Figure 16: Toroidal coupling in Wendelstein WVII-AS #34077.
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GAE Discrete Spectrum: 34077
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Figure 17: The discrete spectrum of GAEs in Wendelstein WvII-AS #34077. The mode
n number is plotted on the horizontal axis and the mode m number is indicated on the
graph. Modes with identified GAEs are marked with a dot (e), and where no GAE was
found numerically, the lower edge of the Alfvén continuum is indicated with a cross (x).

Where a solution was found, it was identified as a GAE and plotted on the graph with a dot
(e). Where no solution was found, the lower edge of the Alfvén continuum was taken as an
estimate for the GAE frequency, and plotted on the graph with a cross (x).

30



7 Wendelstein WVII-AS Shot #37937

Although also in the : 2 % operating regime of Wendelstein WVII-AS, the shot #37937 is quite
different from the other two previously considered. The plasma in this shot is significantly
smaller and slightly cooler but has much higher particle densities. The central value of 3,
the ratio of kinetic to magnetic pressures, obtained from the reconstructed equilibrium is
Bo = 2.39%, as compared to 3y = 0.40% in the case of #34077 and [y = 0.29% in the case of
#11474.

7.1 Input Parameters

Unlike the previous two Wendelstein WVII-AS equilibria described in this chapter, the equi-
librium used for #37937 was obtained from a prototype of a new function parameterization
interpolation algorithm [11]. The TRANS database, which only handles cases with 3 < 1%
was not able to return an interpolated equilibrium for shot #37937.

Although the antenna used in an active excitation experiment during this shot was actu-
ally centred at the ¢ = 29° plane, we have chosen to model the plasma cross-section at the
elliptical (¢ = 36’) plane, again so as to be consistent with a corresponding two-dimensional
model based on the CASTOR two-dimensional resistive MHD code.

At this plane, the recovered equilibrium has an on-axis magnetic field of By = 1.57 T, the
magnetic axis is at a major radius of R = 2.11 m from the vessel centre, and the plasma minor
radius is a = 0.154 m, giving an inverse aspect ratio parameter of € = 0.0733.

The equilibrium g-profile is shown in Figure 18(a). There is significant magnetic shear
here, compared to the previous low-3 cases. Figure 18(b) shows the electron density profile,
returned by the multichannel Thomson scattering diagnostic. The mass density profile is as-
sumed to be given by the condition of quasi-neutrality (9) for a Deuterium plasma. As before,
fourth order polynomials have been fitted to the discrete points in these profiles.

7.2 Alfvén Continuous Spectra

Figure 19 shows the structure of the Alfvén continuum layers with toroidal mode numbers
n=0,n=—1,n= —2and n = —3 in a cylindrical model for shot #37937.

In high-3 plasmas in Wendelstein WVII-AS, the presence of high shear results in the clos-
ing of many of the gaps for the negative-helicity GAEs seen in the low-3 (and hence low-shear)
plasmas. In such high-3 plasmas, the global structure of the Alfvén continuum layers begins
to resemble that of a tokamak. The gaps for negative-helicity GAEs close due to the strong
dependence of the parallel wave vector k on radial position x in the expression (17), and by
and large, only the positive-helicity GAEs at higher frequencies remain.

However, there are now many crossing points, where Alfvén continua with common n
numbers cross each other in the cylindrical case. At these crossing points, the strongly non-
cylindrically symmetric Wendelstein WVII-AS plasma is expected to give rise to gaps, such
as the TAE gaps calculated with the asymptotic expansion (19) and plotted in Figure 20.
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Fitted TRANS q-profile #37937
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Figure 18: Equilibrium profiles used for the model of Wendelstein WvII-AS #37937.
(a) The safety factor profile g(x) and (b) the electron density profile n,(x). Fourth-order
polynomials have been fitted to the discrete points.
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Figure 19: Alfvén continua for Wendelstein WVII-AS #37937. These curves have been cal-
culated in cylindrical geometry and the curves for the (m, —n) mode and the (—m, n) mode
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Figure 20: Toroidal coupling in Wendelstein WvII-AS #37937.
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7.3 Inadequacy of the One-Dimensional Model

Because of increased shear, the Alfvén continuous spectrum of Wendelstein WvI1I-AS shot
#37937 almost resembles that of tokamaks, with many intersecting cylindrical continua and
gaps where these continua couple to each other in a two-dimensional calculation. We ex-
pect the low-frequency discrete spectrum of global Alfvén eigenmodes to thus be dominated
by non-cylindrical eigenmodes — TAEs, EAEs and higher-order eigenmodes - existing within
these gaps.

Although the one-dimensional model presented in this chapter includes analytical expres-
sions for predicting these gaps, differential equations for the numerical solution of eigen-
modes within the gaps are, at the moment, not included.

8 Conclusion

A one-dimensional model for GAEs has been presented in this chapter. Analytical calcula-
tions were performed, using this model, to determine the Alfvén continuous spectra for TOR-
TUS high-current plasmas and for three Wendelstein WVII-AS equilibria in the ¢ > 1 operat-
ing regime. Numerical calculations were then performed to determine the discrete spectrum
of GAEs in these plasma equilibria.

This plasma model is useful, in the low-frequency band, in plasmas where the discrete
Alfvén spectrum is dominated by GAEs and not by non-cylindrical Alfvén eigenmodes. In
plasmas where non-cylindrical Alfvén eigenmodes dominate the discrete Alfvén spectrum,
differential equations based on an asymptotic expansion of the poloidal flux function need
to be developed and included into this model so that the eigensolutions corresponding to
these wave modes can be determined. In general, this latter scenario corresponds to equi-
libria where there is significant plasma shear, including most traditional tokamak equilibria.
In Wendelstein WVII-AS, low magnetic shear renders the present simple model useful in low-
beta (3 < 1%) plasmas in the ¢ 1 regime.

The main argument for this model are: its simplicity, that it works almost every time with
parameters within its region of validity and that it requires comparatively little computing
time. For typical work reported here, less than 600 s of CPU time was required for the calcu-
lation of the Alfvén spectrum for a given input equilibrium, in contrast to 10° s CPU time for
the fully two-dimensional model based on CASTOR.

Further work which could be done to extend this model include the inclusion of wave
damping effects and floating boundary conditions. This would enable the introduction of an
antenna model and calculations of antenna loading.



A The Package coldl1D

The model described in this paperhas been implemented in the C++ code package col1d1D. At
the IPP, this code has been archived in /afs/ipp/m/act/distrib/coldlD. tgz and can
be extracted on any IBM RISC computer running the AIX operating system with the command:

> gtar zxvf /afs/ipp/m/act/distrib/coldlD.tgz

Rerun this command anytime you wish to restore all files to their original version.

There should now be a subdirectory named cold1D in the directory in which you exe-
cuted the above command. Enter this subdirectory and compile the code package with the
command sequence:

> c¢d coldlD
> make

What should follow is a whole lot of compiler debugging output, which you can (hope-
fully!) safely ignore. When compilation is complete, check that everything was successfully
compiled with the 1s -F command. This shows you a directory listing, which should look
like:

> 1ls -F
Makefile ctm* gae¥* include/ 1lib/ spec*
Makefile.d ctmtae* hack/ input/ main/ src/

Notice that the four main programmes which comprise the cold1D package, ctm, ctmtae,
gae and spec, are present.

A1 Input Files

Input files all reside in the subdirectory input. All of the input files used for the computa-
tions in this report have been included in the package, and can be listed using the command
1s input as follows:

> 1s input
parm.dat w7as.11474 w7as.34077 w7as.37931 w7as.highiota
tortus w7as.31096 w7as.37551 w7as.37937 w7as.lowiota

_ All of the programmes in the co1d1D package require two input files, one to specify the
computation and plot limits and another to describe the vessel and plasma parameters for
computation. This package uses standard FORTRAN90-style namelist files for all inputs.

The computation and plot limits are specifyed by default by the file input /parm. dat, al-
though you may use the command-line option -£ <Alternative LimitsFile> tospec-
ify and alternative limits file (see next subsection). The variables which need to be specified
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are straightforward and the file is self-documenting. It can be viewed using the command
-cat input/parm.dat as follows:

> cat input/parm.dat
Default limits and plotting variables

&limits
xmin=0.0, xmax=1.0, fmin=0.0, fmax=0.5,
mmin=-20, mmax=20, nmin=-5, nmax=5,

xmin, xmax = Min and max values of x (normalized radial coordinate)
fmin, fmax Min and max values of f (frequency, in MHz)

mmin, mmax Min and max values of m (poloidal mode number)

nmin, nmax = Min and max values of n (toroidal mode number)

Il

&plot
npts=201,
cheight=0.8,
nlbl=3, x1bl = 0.1, 0.4, 0.7,
dxtext=0.02,
dytext=0.02,
/

npts = number of points to use in graphs

nlbl number of text labels to use

x1bl normalized radial position of the text labels

dxtext, dytext = normalized displacement of text labels from graph

You may edit this file with an editor of your choice (eg. vi, emacs etc.) to change the
computational and plot limits. Do not forget to separate all variables with commas (,) and
also do not forget that text not enclosed by the ampersand (&) and the slash (/) is ignored by
the computer. You may thus place helpful comments in your input files.

The device and plasma parameters are specified in other files. For example, all the calcu-
lations in Section 4 of this report were done with the input file input/tortus, Section 5 with
input/w7as.11474, Section 6 with input/w7as.34077 and Section 7 with
input/w7as.37937. Thefile input/w7as.11474 has comments in it, and can be viewed
with the command cat input/w7as.11474 as follows:

> cat input/w7as.11474
W7-AS #11474

&vessel

R=2.0, a=20.179, B = 2.54, Aion = 1, Zion = 1,
/

R = Major radius (in m)
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a = Minor radius (in m)

. B = Toroidal magnetic field (in T)
A = Atomic mass number of the ions
Z = Atomic number of the ions
&gprof

nqg = 4,

aq(0) = 2.78210,

ag(l) = -0.10383,

ag(2) = 0.50772,

aq(3) = -0.26546,

ag(4) = -0.04175,
/

ng = degree of the polynomial specifying the g-profile

The q profile is given by:
g(x) = ag(0) + x*ag(l) + x"2*%aqg(2) + ... + X ng*ag(nq)
where x is the normalized radial coordinate.

&nprof
nn = 4,
an(0) = 9.1729e+19,
an(l) = -4.0748e+19,
an(2) = 2.1365e+20,
an(3) = -6.3496e+20,
an(4) = 3.7516e+20,
/

nn = degree of the polynomial specifying the density profile

The n profile is given by:
n(x) = an(0) + x*an(l) + x"2*an(2) + ... + x"nn*an(nn)
where x is the normalized radial coordinate.

Use the command cp input/w7as.11474 input/<name-of-your-choice> to
make copy of this file before editing it.

For WVII-AS, the g-profile can be obtained by inverting the +-profile given by interpola-
tion from an equilibrium database such as TRANS. The density profile can be obtained from
transformed Thomson scattering data.

A.2 Calculating Alfvén Continua

The programme ctm calculates the Alfvén continua (equation 17) of a plasma, specified in a
form similar to the input file input/w7as.11474 described in the previous subsection.

The input file must be named on the command line upon execution ctm. Optional argu-
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ments which can also be given on the command line are the limits file and the plotting device.
To run ctm with the limits file input/parm.dat, with an X-windows terminal and on the
input file input/w7as.11474, enter:

> ctm w7as.11474
at the command line, which has an identical effect to entering
> ctm -f parm.dat -d XWIN w7as.11474

as input/parm.dat and XWIN are respectively the default limits file and plotting device.
If you create your own limits file mylimits.dat and wish to produce a colour postscript
output file, enter

> ctm -f mylimits.dat -d PSC w7as.11474

at the command line. This produces a colour postscript plot file ctm. psc. If you do not want
colour, use the option -d PS to produce a black-and-white postscript file ctm.ps.

After you have gotten ctm running, what follows is a table of limits read from the limits
file and a table of parameters read from the input file. You may inspect these tables to ensure
that no error occurred in reading from both these files. Several parameters in the limits file
are ignored by ctm, as they are meaningless in the context of this programme. The ignored
variables are: nmin and nmax from the namelist &1imits and dxtext from the namelist
&plot.

You will the be prompted for the # number for which you wish to calculate the Alfvén
continua. Type in the n number and wait for the programme to finish. Debugging output
showing the m numbers and the minimum frequencies of the corresponding Alfvén continua
should appear on your screen.

If you use an X-window as your plotting device, you will need to clock the right button
of your mouse in the X-window to make it go away when the programme is complete.

To calculate the Alfvén continua with corrections for toroidal coupling (equation 20), use
the programme ctmtae in place of ctm.

A.3 Calculating GAE Eigenfrequencies and Eigenfunctions
The programme gae calculates GAE eigenfrequencies and eigenfunctions. The equations (13)
are solved for a plasma, specified in a form similar to the input file input/w7as.11474.

The command-line options for gae are identical to those for ctm. The postscript output
files for colour and black-and-white are, respectively, gae.psc and gae.ps.

Data are also read from the limits and input files in an identical manner. The ignored plot
variables in gae are: mmin, mmax, nmin, nmax, nlbl, x1bl, dxtext and dytext.
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When gae is running, you will be prompted to enter the m and n numbers of the GAE
_ whose eigenfunction you wish to find. Enter the two integers, separating them with a space.
Debugging output should now appear on your screen.

If you use an X-window as your plotting device, you will need to clock the right button
of your mouse in the X-window to make it go away when the programme is complete.

The programme spec calculates the spectrum of GAEs present in a particular plasma. It
once again takes the same command-line options as the other programmes in the col1d1D
package. Itignores none of the variables in input/parm.dat, as all of them are meaningful
in its context.

B A Brief Comment on a Two-Dimensional Model

The linear resistive MHD spectral code CASTOR [12], together with the Grad-Shafranov solver
HELENA [13], calculates the resistive MHD wave spectra in two-dimensional equilibria. Wave
equations are derived from a resistive MHD model for the plasma and solved on meshes rep-
resenting the calculated equilibria, subject to boundary conditions imposed by perfectly con-
ducting vessel walls, a vacuum region between the walls and the plasma and antennae lo-
cated in this vacuum region.

Two-dimensional equilibrium models of TORTUS and WVII-AS plasmas are developed
using HELENA. Alfvén continuum layers were then identified by using CSCAS [14], a reduced
eigenvalue version of CASTOR. A new version of CASTOR [15], modelling the coupling of an
external antenna to wave modes in the plasma, was then used to numerically calculate the
resistive MHD spectrum of the equilibrium models. This work is described in [16], copies of
which are obtainable at the IPP from Dr. A. Weller (L7 /205, ext. 1905).

This fully two-dimensional model overcomes many of the shortcomings of the one-
dimensional model with two-dimensional “corrections”. Where the one dimensional model
works quite capably in calculating the Alfvén continuous spectra of tokamak equilibria with
relatively simple cross-sectional geometries and of stellarator equilibria with very flat rota-
tional transform c-profiles, it fails when both geometric complexity and magnetic shear are
present in the modelled plasma.

However, there are many limitations in using this two-dimensional model on a three-
dimensional stellarator equilibrium. The description of the equilibrium magnetic field in
terms of a toroidal field in addition to a poloidal field, generated by a toroidal plasma current,
is quite different from the helical field configuration of a stellarator. Furthermore, the chang-
ing plasma cross-section of the stellarator plasma needs a fully three-dimensional model for
a complete description.

The projection of the stellarator equilibrium field configuration onto a tokamak descrip-
tion worked well. Excellent agreement could be obtained between the stellarator ¢-profile and
the ¢-profile of the two-dimensional model by constructing a simulated toroidal current den-
sity Jo-profile in the model, although this procedure is both fiddly and tedious. This points to
the need more flexibility in the specification of the magnetic configuration in HELENA. Ide-
ally, we would like to get HELENA to converge to the g-profile of an input equilibrium, instead
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of Jo-profile. This would involve re-writing much of the original code.

Fitting a three-dimensional equilibrium into an axisymmetric model poses the problem
of choosing a plasma cross-section to use in the two-dimensional equilibrium. The strategy
adopted was to use the cross-section of the mid-plane of the antenna, as this enables more
realistic representation of the antennae used. A further complication arose, that is that HE-
LENA could not cope with WVII-AS cross-sections which are not top-down symmetric. A def-
inite cause for this problem has not been established, although I suspect that it lies in the sim-
ulated Jo-profile required to produce WVII-AS-like ¢-profiles in a two-dimensional plasma.
The large surface currents required may be causing convergence problems in HELENA.

This problem and the extreme sensitivity of HELENA to the input simulated Jo-profile,
even in top-down symmetric geometry, limits the usefulness of modelling WVII-AS plasmas
with HELENA and CASTOR.

A study of the dependence of the Alfvén continuous spectrum on the shape of the plasma
cross-section was performed. The structure of the Alfvén continuous spectra was found to de-
pend fundamentally on the cylindrical continua, with shaping effects introducing only first-
order shifts in frequencies and gap sizes. Poloidal modes couple to each other in non-circular
plasma cross-sections, with the strength and nature of this coupling dependent on the shape
of the plasma. Although this two-dimensional model may not predict the frequencies to good
accuracy, we still expect it to be of limited use in predicting the Alfvén continuous and dis-
crete spectra of a given three-dimensional equilibrium.
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