English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Exome sequencing from nanogram amounts of starting DNA: comparing three approaches

MPS-Authors
/persons/resource/persons50508

Rykalina,  Vera
Technology Development(Alexey Soldatov), Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50553

Shadrin,  Alexey
Technology Development(Alexey Soldatov), Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50066

Amstislavskiy,  Vyacheslav
Human Chromosome 21 (Marie-Laure Yaspo), Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50409

Lehrach,  Hans
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50111

Borodina,  Tatiana A.
Technology Development(Alexey Soldatov), Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Rykalina.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Rykalina, V., Shadrin, A., Amstislavskiy, V., Rogaev, E. I., Lehrach, H., & Borodina, T. A. (2014). Exome sequencing from nanogram amounts of starting DNA: comparing three approaches. PLoS One, 9(7): e101154. doi:10.1371/journal.pone.0101154.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0026-AA94-E
Abstract
Hybridization-based target enrichment protocols require relatively large starting amounts of genomic DNA, which is not always available. Here, we tested three approaches to pre-capture library preparation starting from 10 ng of genomic DNA: (i and ii) whole-genome amplification of DNA samples with REPLI-g (Qiagen) and GenomePlex (Sigma) kits followed by standard library preparation, and (iii) library construction with a low input oriented ThruPLEX kit (Rubicon Genomics). Exome capture with Agilent SureSelectXT2 Human AllExon v4+UTRs capture probes, and HiSeq2000 sequencing were performed for test libraries along with the control library prepared from 1 µg of starting DNA. Tested protocols were characterized in terms of mapping efficiency, enrichment ratio, coverage of the target region, and reliability of SNP genotyping. REPLI-g- and ThruPLEX-FD-based protocols seem to be adequate solutions for exome sequencing of low input samples.