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 With 1 Figure

Seawater total alkalinity (TA; determined by the charge imbalance of the conservative ions 

in seawater) and total dissolved inorganic carbon (TCO2; the sum of carbon species) control 

the variations of pCO2 in seawater, which in turn directly determine the air – sea exchange of 

CO2. Because TA and TCO2 are conserved during mixing and are unaffected by changes in 

temperature and pressure (Zeebe and Wolf-Gladrow 2001), they are key parameters of the 

marine carbonate system used as state variables in models of ocean biogeochemistry. Oceanic 

TA is altered by three main processes, being (i) changes in freshwater "uxes, such as precip-

itation/evaporation, riverine discharge of fresh water, ice growth and melting, (ii) production 

of CaCO3 by calcifying organisms (e.g. coccolithophorids, corals, foraminifera) and CaCO3 

dissolution in the water column and deep-sea sediments; and (iii) production and reminerali-

zation of organic matter by microalgae. Increase in the surface ocean TA enhances the oceanic 

uptake of atmospheric CO2, while decreasing TA lowers the oceanic capacity to take up and 

store carbon. Changes in seawater TA by a variety of mechanisms are thought to be responsible 

for modulating the variations of atmospheric CO2 along glacial-interglacial timescales (e.g. 

Rickaby et al. 2010, Kleypas 1997, Archer and Maier-Reimer 1994). Enhancement of 

TA has been proposed as a mean of deliberate manipulation of climate (Köhler et al. 2013, 

Ilyina et al. 2013a). Therefore, understanding the spatiotemporal distribution of TA changes 

is critical to grasp the oceanic capacity to uptake and store carbon. Furthermore, dissolution of 

CO2 in seawater does not change TA, but may affect processes controlling its cycling. Hence, 

it is also interesting to study TA in the context of climate change, i. e. in a rising CO2 ocean.

Projections of future climate change calculated within the 5th Phase of the Coupled Model 

Intercomparison Project (CMIP5) with the Max Planck Institute’s Earth system model (MPI-

ESM, Giorgetta el al. 2013) will be presented. CMIP5 experiments examined here include 

a historical run covering the period 1850 –2005 and three future climate change scenarios re-

ferred to as extended concentration pathways (ECPs) running from the year 2006 until 2300. 

These ECPs follow the standard RCP scenarios in terms of the achieved radiative forcing of 

8.5, 4.5, and 2.6 W m–2 by the end of the 21st century with simple stabilization assumptions 

for the atmospheric CO2 concentrations made onwards. Such extended future climate change 

projections ran only in the low resolution model version (LR) of MPI-ESM driven by pre-

scribed atmospheric CO2 concentrations. The oceanic biogeochemistry component of MPI-

ESM is the model HAMOCC (Ilyina et al. 2013b) which runs as a subroutine of the OGCM 

MPIOM. The horizontal resolution of the oceanic component of MPI-ESM-LR is about 1.5°.
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The model HAMOCC simulates inorganic carbon chemistry (Maier-Reimer and Has-

selmann 1987) and uses an extended NPZD-type description of marine biology (Six 

and Maier-Reimer 1996) in which phytoplankton and zooplankton dynamics depend on 

temperature, solar radiation, and co-limiting nutrients (phosphate, nitrate, iron, silicate). 

HAMOCC uses one phytoplankton type for primary production but separates two types 

of planktonic shell materials (opal and calcium carbonate shells, respectively), which are 

exported from the euphotic zone with different sinking rates. TA in the model is the sum 

of carbonate, borate alkalinities, and water dissociation products. TA is altered during pro-

duction and dissolution of CaCO3. Dissolution of CaCO3 is a function of the carbonate 

ion and the calcium ion concentrations, as well as temperature and pressure dependent 

stoichiometric constant, and is driven by the deviation from the saturation state. Biogenic 

calcite particles, produced in the euphotic zone, precipitate if seawater is supersaturated 

with respect to CaCO3 and start dissolving if the water column or the sediment pore-water 

is undersaturated with respect to CaCO3. Seasonal growth of phytoplankton increases TA, 

while aerobic remineralization of organic matter decreases it. Additionally, TA is altered 

during denitri$cation. The model HAMOCC also includes a sediment module (Heinze 

et al. 1999) which calculates formation and dissolution of sediments basically simulating 

the same biogeochemical processes as in the water column. Globally uniform weathering 

"uxes are prescribed over the simulation period.

Both the physical and the biogeochemical state of the oceans are undergoing major 

changes as a result of global warming and ocean acidi$cation (IPCC 2013). These ongoing 

changes perturb fundamental mechanisms that act to modify TA in the ocean. Yet, resulting 

changes in TA are not intuitively projected. In our simulations, changes in the distribution 

of TA are calculated in response to the intensi$ed hydrological cycle, reorganization of the 

circulation patterns, changes in biological processes and carbonate chemistry. Consistent with 

these, both positive and negative anomalies are projected in TA (Fig. 1). Because changes in 

TA are closely related to changes in salinity, TA anomalies at the surface resemble the pat-

terns of salinity anomalies. Weaker correlation between anomalies in surface salinity and TA 

is found in the equatorial Paci$c and in the Indian Ocean. These areas of the global ocean 

are characterized by higher primary production, including production of CaCO3, relative to 

other oceanic areas. In response to a decreased nutrients supply to the surface, the primary 

production and corresponding export production of organic matter and CaCO3 is reduced. 

Furthermore, only rather small changes in salinity are projected in these regions of the ocean. 

Hence, changes in TA here are driven by changes in biological processes. In the subsurface 

and deep ocean, effects of changes in production and dissolution of CaCO3 on changes in TA 

are not pronounced in our projections, as the ocean stays largely supersaturated with respect 

to CaCO3 over the simulated time range. The contribution of carbonate dissolution becomes 

prominent on longer temporal scales (Ilyina and Zeebe 2012). Additionally, reduced pro-

duction of CaCO3 due to ocean acidi$cation can have a signi$cant effect on the precipitation 

of CaCO3 and thereby modify the global distribution of TA (e. g. Ilyina et al. 2009). Region-

ally, subsurface TA anomalies are also driven by changes in organic matter remineralization 

by respiration and denitri$cation.

In summary, we show that changes in seawater TA can modulate oceanic uptake of car-

bon. Furthermore, our results indicate that TA is projected to undergo changes, which should 

not be ignored when diagnosing the oceanic capacity to take up and store carbon in future 

projections, as well as in calculations of air-sea CO2 exchange on glacial-interglacial time-
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scales. Finally, we show that changes in mixing/ventilation, production and dissolution of 

CaCO3, remineralization of organic matter by aerobic and anaerobic processes, and sedimen-

tary "uxes act in concert to contribute to the projected changes in TA. Thus, these processes 

have to be included prognostically in modelling studies.

Fig. 1  Changes in TA μmol kg−1 for the scenario RCP8.5 in 2090 –2100 relative to 1850 –1860 at the ocean surface, 

averaged over the upper 100 –1000 m, and over the depth of 1000 –3000 m.
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