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Immunochip SNP array identifies novel genetic
variants conferring susceptibility to candidaemia
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Candidaemia is the fourth most common cause of bloodstream infection, with a high

mortality rate of up to 40%. Identification of host genetic factors that confer susceptibility

to candidaemia may aid in designing adjunctive immunotherapeutic strategies. Here we

hypothesize that variation in immune genes may predispose to candidaemia. We analyse

118,989 single-nucleotide polymorphisms (SNPs) across 186 loci known to be associated with

immune-mediated diseases in the largest candidaemia cohort to date of 217 patients of

European ancestry and a group of 11,920 controls. We validate the significant associations by

comparison with a disease-matched control group. We observe significant association

between candidaemia and SNPs in the CD58 (P¼ 1.97� 10� 11; odds ratio (OR)¼4.68),

LCE4A-C1orf68 (P¼ 1.98� 10� 10; OR¼4.25) and TAGAP (P¼ 1.84� 10� 8; OR¼ 2.96) loci.

Individuals carrying two or more risk alleles have an increased risk for candidaemia of

19.4-fold compared with individuals carrying no risk allele. We identify three novel genetic

risk factors for candidaemia, which we subsequently validate for their role in antifungal host

defence.
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C
andidaemia is the fourth most common bloodstream
infection1, with known risk factors such as neutropenia,
mucosal barrier injury, transplantation, immuno-

suppressive drugs, intravascular catheters and extended
intensive care unit stay2–4. Despite the availability of potent
antifungal drugs, the mortality of patients with candidaemia
remains high (up to 37–44%)5,6. It has therefore been proposed
that only intensified patient care, using risk assessment and
adjuvant immunotherapy, may improve the outcome7.

The host immune status is crucial for the outcome of Candida
infections, and identifying genetic variation in immune genes that
confer susceptibility to Candida infection may aid in designing
effective preventive strategies. Several small-scale candidate gene
association studies suggest a role in candidaemia risk for single-
nucleotide polymorphisms (SNPs) in toll-like receptors (TLR-1,
TLR-2, TLR-3 and TLR-4), interleukins (ILs) (IL-12B and IL-10)
and lymphoid protein tyrosine phosphatase PTPN22 (ref. 3).
Interestingly, B10 monogenic disorders have been reported to be
associated with chronic mucocutaneous candidiasis, and almost
all are caused by defects in genes of the immune system3.
Intriguingly, common SNPs in 8 out of these 10 monogenic
disorder genes (AIRE, CARD9, STAT1, STAT3, TYK2, CD25,
IL17RA and IL17F) are also associated with susceptibility to
different immune-mediated diseases (NHGRI GWAS catalog8),
implying that genes necessary for immune regulation are strong
candidates in determining susceptibility to fungal infections.

Here we report the first genome-wide screen of B200,000
SNPs in 186 loci in the largest candidaemia cohort to date. By
using the Immunochip SNP array9, we identify three novel
genetic risk factors for candidaemia that were validated using
transcriptomics, pathway analysis and immunological studies.

Results
Association analysis identifies three candidaemia risk loci.
After filtering the Immunochip data using standard quality
parameters, we obtained 118,989 SNPs from the 217 candidaemia
cases and 11,920 healthy controls, which we analysed using
logistic regression analysis. The results of this analysis revealed
significant association (Po5� 10� 8) to three independent loci
with candidaemia (Fig. 1a). The top SNPs from these three loci
were rare in healthy controls, with risk allele frequencies o2%,
whereas the risk allele frequencies were 45% in candidaemia
cases (Table 1). The top-associated SNP, rs17035850 (P¼ 1.97
� 10� 11; odds ratio¼ 4.68), is located in a block of linkage
disequilibrium (LD) of B30 kb at 1p13.1, which contains the
CD58 gene (Fig. 1b), two long non-coding RNAs (lncRNA), RP5-
1086K13.1 and RP4-655J12.4, and the pseudogene NAP1L4P1
(Supplementary Fig. 1). The second hit was with rs4845320
(P¼ 1.98� 10� 10; odds ratio¼ 4.25), which lies in an LD block
of 150 kb at 1q21.3 (Fig. 1c) that contains a cluster of genes
encoding late cornified envelope (LCE) proteins10. The third
significantly associated SNP, rs3127214 (P¼ 1.84� 10� 8; odds
ratio¼ 2.96), is located at the 50 end of TAGAP (Fig. 1d),
encoding T-cell activation RhoGTPase-activating protein11, in an
LD block of 120 kb at 6q25.3.

Validation and replication of three associated SNPs. Since we
used a large population-based control cohort for discovering
candidaemia susceptibility loci, we tested whether these associa-
tions could be confirmed using 146 disease-matched controls
(Table 2). We observed a significant difference between cases and
controls at two loci (LCE4A-C1orf68 and TAGAP), whereas at the
CD58 locus we observed a trend of association (Table 1). This
latter effect could be explained by the small number of controls
and/or low frequency of the risk allele at rs17035850 (Table 1).

The top CD58 SNP (rs17035850) is a rare variant with a minor
allele frequency (MAF) of 0.012, and the second CD58 SNP
(rs12025416) is a frequent one with MAF of 0.13. We assessed the
pairwise LD between these two CD58 SNPs in our population-
based controls. We observed both a low correlation (r2¼ 0.09)
and a high D0 (D040.96) between these two SNPs, indicating the
existence of rare risk haplotype that carry the risk alleles of these
two SNPs. Therefore, we also tested for association at the second
CD58 top SNP, rs12025416, which is more frequent, and we
observed a significant association with susceptibility to candi-
daemia (P¼ 0.022). Therefore, these results suggest that the
observed associations are true genetic associations.

To further evaluate these associations genetically, we carried
out replication analysis by genotyping the four SNPs in two
independent candidaemia cohorts (one of 75 African-American
patients and one of 27 European patients from Switzerland).
Because of the small size of these additional cohorts, we found no
successful replication in two independent cohorts, although we
observed only a trend of association for rs4845320 SNP in the
TAGAP locus in the African-American cohort (Supplementary
Table 1). Since the Swiss candidaemia replication cohort included
matched controls, we performed a joint analysis of the discovery
cohort with the matched controls and the Swiss candidaemia
replication cohort. This analysis revealed an improved association
for two loci: rs12025416 in the CD58 locus (P¼ 0.015) and
rs4845320 in the LCE4A-C1orf68 locus (P¼ 0.0036), with the
same allelic direction and without any evidence for heterogeneity
between the two cohorts (Supplementary Table 2).

Functional annotation of candidaemia-associated SNPs. To
understand how the candidaemia-associated SNPs from these
three loci affect disease, we intersected the three top SNPs as well
as their proxies (r2

Z0.8 and D0 ¼ 1) with functional information
from ENCODE using HaploReg12. We found 7, 19 and 5 SNPs to
be in high LD with rs17035850, rs4845320 and rs3127214 SNPs,
respectively (Supplementary Table 3). All SNPs that were in LD
with the three candidaemia top SNPs were located in non-coding
regions and not within exons of protein-coding genes. Some of
these SNPs were overlapping with ENCODE-characterized
regulatory regions, such as enhancers and/or DNase
hypersensitive sites, suggesting that these SNPs may regulate
gene expression. Next, we tested whether these SNPs affect
expression of nearby genes using publicly available blood
expression quantitative trait locus data from 5,000 samples13.
However, we found no significant expression quantitative trait
loci for these SNPs. Thus, it could be that the identified SNPs are
likely in LD with regulatory variants, but these may only be
functional in cell types such as macrophages and under
stimulatory conditions with Candida infection. This will be
important to test in the future studies.

Interestingly, the LD block around the top-associated SNP,
rs17035850, contains not only the CD58 protein-coding gene, but
also non-coding genes, namely RP5-1086K13.1, RP4-655J12.4 and
the pseudogene NAP1L4P1 (Supplementary Fig. 1). Since many
lncRNAs are co-regulated with their protein-coding gene in cis,
there is a possibility that RP5-1086K13.1 lncRNA is co-regulating
CD58. To test this possibility, we extracted all co-regulated genes
with RP5-1086K13.1 using the GeneNetwork database14.
We found that RP5-1086K13.1 is significantly co-regulated with
CD58 compared with all other genes in the human genome
(Supplementary Table 4). This observation suggests the
possibility that even if the SNP affects the expression of
RP5-1086K13.1, that may in turn affect CD58 expression levels.

Association of CD58 and TAGAP SNPs with severity of disease.
In addition to increasing susceptibility to candidaemia, the
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polymorphisms identified above may also influence the severity
of the disease. Indeed, assessment of the effect of these SNPs
revealed that CD58 SNP rs17035850 associated with persistent
fungemia, defined as positive blood cultures for 45 days despite
adequate therapy (P¼ 0.005), while TAGAP SNP rs3127214
associated with disseminated disease in the organs (P¼ 0.017)
(see also Supplementary Table 5).

The transcriptomes of CD58- and TAGAP-deficient macro-
phages. Practically nothing is known regarding the roles of CD58
and TAGAP in antifungal host defence. To identify the antifungal
host defence mechanisms influenced by these two genes, we
assessed genome-wide transcriptional changes in wild-type
macrophages, as well as macrophages in which the expression of
CD58 and TAGAP was strongly reduced by small interfering
RNA (siRNA) transfection at 6 and 24 h upon Candida infection.
Efficient downregulation of CD58 messenger RNA (mRNA) was
obtained by siRNA transfection, whereas only a mild effect was
seen on TAGAP mRNA levels (Supplementary Fig. 2). Genome-
wide transcriptional changes in wild-type and CD58-deficient

macrophages showed a total of 169 (at 6 h) and 93 (at 24 h)
transcripts with at least a 1.25-fold differential expression
(Supplementary Fig. 3). Enrichment analysis showed that the
differentially expressed genes are enriched for innate immune
function, regulation of cytokine production and general cellular
responses to bacterial infections (Supplementary Fig. 4). Fur-
thermore, we investigated whether mutations in these differen-
tially expressed genes show any common phenotypes in the
mouse using the Mouse Genome Informatics phenotype data
integrated in the GeneNetwork database. Indeed, we observed a
significant enrichment for genes in which mutations may cause
altered levels of IL-6 and tumor necrosis factor (TNF)-a
secretion, and impaired macrophage phagocytosis (Fig. 2a). These
data suggest that altered expression levels of CD58 may regulate
Candida phagocytosis on one hand, and indirectly regulate IL-6
and TNF-a secretion on the other hand.

Functional validation of CD58 for anti-Candida host defence.
We next tested the CD58 mRNA levels in macrophages at 6 and
24 h upon Candida infection using microarray data. We observed
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a significant upregulation of CD58 in response to Candida
infection at 6 h (Fig. 2b; P¼ 0.04), whereas no difference was seen
at 24 h, suggesting CD58 as an early-response gene in host
defence against Candida. To validate the functional role of CD58
in anti-Candida response further, we investigated the phenotypes
of macrophages with silenced CD58. It has been demonstrated
that yeast-to-hyphae transition is one of the virulence factors for
Candida to escape macrophage phagocytosis15. As expected, live
Candida through germ-tube formation could escape macrophage
phagocytosis in the control siRNA-transfected group, as well as in
the TAGAP siRNA group. Strikingly, a massive fungal outgrowth
with extensive fungal hyphae formation was observed in the
CD58 siRNA-transfected group (Fig. 2c), showing that CD58 is
important for Candida phagocytosis and inhibition of
germination. To validate this possibility further, the co-
localization of CD58 and Candida in the phagosome was
examined by fluorescence microscopy. Upon Candida
phagocytosis, a clear recruitment of CD58 (green) around the
calcofluor white-labeled Candida (blue) was observed, indicating
co-localization of CD58 and Candida during phagocytosis
(Supplementary Fig. 5). When a yeast-locked Dhgc1 C. albicans
strain was used, there was no defect in the control of fungal
growth in cells transfected with CD58 siRNA (Fig. 2d).

As the transcriptome and pathway analyses in CD58-deficient
macrophages implicated altered levels of IL-6 and TNF-a secretion,
we tested the role of CD58 SNPs with these cytokine levels. The
cytokines IL-6 and TNF-a were quantified from macrophages
stimulated with either lipopolysaccharide (LPS) or Candida. The
top CD58 SNP, rs17035850, is a rare SNP with very low risk allele
frequency. Therefore, we tested the second CD58 top SNP,
rs12025416, which occurs more frequently, for association with
cytokine levels. Functional genetic validation showed that CD58
SNP rs12025416 genotypes modulated cytokine production, where
the risk allele C was associated with lower levels of Candida-
stimulated IL-6 and TNF-a (Fig. 2e, P¼ 0.0047 and P¼ 0.018,
respectively). In contrast, we found no association with LPS-
stimulated IL-6 and TNF-a levels (Fig. 2e), confirming the specific
role of CD58 polymorphisms in response to Candida infection.

Functional validation of TAGAP for anti-Candida host
defence. Because TAGAP siRNA inhibition in primary

Table 1 | Significantly associated loci with candidaemia that were validated using disease-matched controls.

rs ID Chr Cohorts Case Controls P-value* OR (95% CI) Gene

AA AB BB MAF AA AB BB MAF

rs17035850 1 Cases vs population-based
controls

3 16 198 0.051 0 277 11,642 0.012 1.97� 10� 11 4.68 (2.98–7.35) CD58

Cases vs disease-matched
controls

3 16 198 0.051 0 8 138 0.027 0.15 1.58 (0.66–3.78)

rs12025416 1 Cases vs population-based
controls

11 57 147 0.184 179 2,643 9,097 0.126 0.00035 1.57 (1.22–2.01) CD58

Cases vs disease-matched
controls

11 57 147 0.184 1 32 111 0.118 0.022 1.69 (1.08–2.56)

rs4845320 1 Cases vs population-based
controls

3 16 198 0.051 2 290 11,627 0.012 1.98� 10� 10 4.25 (2.72–6.65) LCE4A-
C1orf68

Cases vs disease-matched
controls

3 16 198 0.051 0 3 143 0.010 0.008 4.09 (1.21–13.85)

rs3127214 6 Cases vs population-based
controls

3 23 191 0.067 11 522 11,386 0.023 1.84� 10�8 2.96 (2.03–4.33) TAGAP

Cases vs disease-matched
controls

3 23 191 0.067 0 8 137 0.027 0.026 2.51 (1.13–5.55)

Chr, chromosome; CI, confidence interval; MAF, minor allele frequency; MDS, multidimensional scaling; OR, odds ratio.
*P-values are derived from logistic regression analysis by including MDS components as covariates.

Table 2 | Clinical characteristics of the candidaemia cohort.

Variable Controls Patients P-value

Mean age (s.d.) (years) 60.2 (17.5) 54.7 (20.2) 0.01
Male gender (%) 49.3 64.0 0.008
Immunocompromised state (%) 36.3 61.7 o0.0001
Hematopoietic stem cell
transplantation (%)

0 2.8 0.06

Solid organ transplant (%) 0.7 15.4 o0.0001

Active malignancy* (%) 21.9 35.0 0.008
Solid tumour 12.3 26.0
Leukaemia 6.2 5.7
Lymphoma 4.1 4.0

Chemotherapy within the past 3
months (%)

12.3 18.9 0.11

Neutropenia (ANCo500 cells
per mm3) (%)

2.7 10.3 0.008

HIV-infected (%) 0 0 —
Surgery within the past 30 days
(%)

56.2 49.1 0.21

Receipt of total parenteral
nutrition (%)

3.4 21.5 o0.0001

Dialysis dependent (%) 4.1 11.6 0.02
Acute renal failure (%) 15.8 31.6 0.001
Liver disease (%) 2.8 19.4 o0.0001
Intensive care unit admission
within the past 14 days

34.2 54.4 0.0003

Candida spp.w (%)
albicans 43
glabrata 27
parapsilosis 16
tropicalis 13
krusei 3

Other Candida spp. 4
Baseline serum creatinine, mean
(s.d.) (mg dl� 1)

1.3 (1.0) 1.6 (1.4) 0.008

Baseline WBC count, mean (s.d.)
(cells per mm3)

10.6 (7.8) 13.5 (13.7) 0.02

ANC, absolute neutrophil count; HIV, human immunodeficiency virus; WBC, white blood cell.
A few patients had positive cultures with 41 Candida species, explaining the slightly higher sum
of percentages than 100%.
*Subjects could have 41.
w18 Subjects had 41 species isolated.
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macrophages was not efficient, we interrogated the GeneNetwork
database to predict TAGAP function based on co-expression data
extracted from B80,000 Affymetrix microarray experiments
(see www.genenetwork.nl/genenetwork). Several gene ontology
molecular functions, such as chemoattractant receptor activity
and cytokine production, were strongly influenced by TAGAP
(Fig. 3a). To validate these pathways, the role of TAGAP was
tested in an in vivo disseminated candidiasis model in Tagap-
deficient mice. While the fungal loads did not differ between
control and knockout mice early during infection, the Tagap� /�

mice were incapable of clearing the fungus from organs at the
later stages of infection (Fig. 3b). In addition, splenocytes isolated
from Tagap� /� mice produced significantly less TNF-a
compared with control animals (Fig. 3c).

Discussion
This first genome-wide association study assessing genetic
susceptibility to a fungal infection identified three novel risk
factors for susceptibility to candidaemia, namely CD58, the
LCE4A-C1orf68 locus and TAGAP. Carrying two or more

risk alleles from these loci increases the risk for candidaemia by
419-fold (Supplementary Fig. 6). Using transcriptomic analysis
and immunological validation, we identified unknown roles of
CD58 and TAGAP in host defence against Candida species.

Genetic association studies are extremely challenging in systemic
fungal infections owing to the inherent difficulty of the relatively
low number of patients available. The difficulty of enrolling a large
number of candidaemia patients is exemplified by the fact that
earlier cohorts had no more than 60 patients16,17. To surpass these
difficulties, we took several steps. First, we increased the number of
patients by combining patients of European descent from Duke
University and Radboud University Nijmegen Medical Center.
Second, for the discovery analysis we used a large cohort of 11,920
population-based controls. Analysing a large number of
population-based controls against a small number of cases could
potentially yield spurious associations owing to population
substructure. Therefore, we strictly relied on confirming the
significant findings by comparing the patients with the
underlying disease-matched control cohort. Additional validation
studies were performed in independent cohorts. Third, we focused
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on genes and gene regions known to be involved in immune-
mediated diseases by using the Immunochip array. Finally, we
confirmed the biological significance of our findings by
immunological and functional genomics experiments.

Our findings have important implications. On one hand, the
19-fold increased risk of developing candidaemia in individuals
carrying two or more risk alleles opens the possibility of using
these SNPs to classify at-risk patients, and identify individuals
who could benefit from prophylactic antifungal treatment. On the
other hand, we have identified novel pathways of host defence
mechanisms against fungi that contribute to a better under-
standing of host defence, and which may also be used for
designing future immunotherapeutic strategies. In this respect,
the unexpected identification of CD58 as an important factor
mediating Candida phagocytosis and the inhibition of germina-
tion on one hand, and modulation of Candida-specific cytokine
production on the other hand, is an important step towards
understanding the pathogenesis of the infection. CD58 is known
as a member of the immunoglobulin superfamily18 and mediates
adhesion and activation of T lymphocytes19. It has been shown to
be involved in the host defence against viral infections, such as
hepatitis B20. The role identified here in inhibiting fungal
germination at the level of the phagosome is unexpected and
sheds light on a novel function of this molecule.

The role of the LCE4A-C1orf68 locus for anti-Candida host
defence could have been anticipated from its involvement in the
barrier function of the epithelium, as Candida colonization of the
mucosae is one of the main risk factors for candidaemia in at-risk
patients21. In contrast, nothing was known regarding a
potential role for TAGAP in antifungal host defence. Using a
GeneNetwork microarray database and co-expression analysis,
and immunological validation in mice with a genetic defect in
Tagap, we demonstrate its role in Candida-induced inflammation
and antifungal host defence.

Interestingly, the genes we have identified as being involved
in the susceptibility to candidaemia are also involved in the
genetic susceptibility to immune-mediated diseases. Polymorph-
isms in CD58 have been reported to increase susceptibility to
multiple sclerosis22 and rheumatoid arthritis23, LCE4A-C1orf68
locus variants are associated with rheumatoid arthritis24

and psoriasis25 and TAGAP polymorphisms influence several
autoinflammatory diseases23,26–29. These data point to strong
similarities between the immune-mediated mechanisms involved
in the host defence against fungal pathogens and those for
immune-mediated pathology. This hypothesis is strengthened by
the associations described between anti-Candida-specific
antibodies and Crohn’s disease30. Similar shared relationships
have been proposed for other pathologies such as leprosy and
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Crohn’s disease28, and it has even been hypothesized that the
genetic susceptibility to autoimmune diseases in modern human
populations was shaped by evolutionary pressure exerted by
infections31,32.

In conclusion, this first, unbiased, genetic association study in a
fungal infection demonstrates the potential of functional
genomics approaches to identify novel risk factors in infections
even in clinical conditions, in which a limited number of patients
are available. Our study highlights genetic variants in three novel
antifungal host defence mechanisms that increase susceptibility to
candidaemia.

Methods
Discovery cohort. Adult candidaemia patients were enrolled after informed
consent at the Duke University Hospital (DUMC, Durham, North Carolina, USA)
and Radboud University Nijmegen Medical Centre (Nijmegen, The Netherlands).
Disease-matched controls were enrolled after informed consent at the Duke
University Hospital (DUMC). The study was approved by the institutional review
boards (Supplementary Table 6) at each study centre, and enrollment occurred
between January 2003 and January 2009 (refs 33,34). Patients must have had at
least one positive blood culture for a Candida species. A total of 217 patients of
European ancestry (36 of the Netherlands origin and 181 of USA origin) were
included in the study (for clinical characteristics, see Table 2).

Two different control groups were employed. One, consisting of 11,920
population-based individuals of European ancestry26,35, was used for the discovery
phase of the study. The second control group consisted of 146 candidiasis-free but
otherwise matched patients. Non-infected patients were recruited from the same
hospital wards as infected patients so that co-morbidities and clinical risk factors
for infection were similar. This second control group was used to confirm the
candidate SNPs identified in the discovery phase. The infected subjects at DUMC
were followed prospectively for up to 12 weeks following diagnosis of candidaemia
to determine their clinical outcome. Disseminated infection was defined as the
presence of Candida species at normally sterile body sites other than the
bloodstream or urine. Persistent fungemia was defined as Z5 days of persistently
positive blood cultures.

Validation cohorts. Two independent cohorts of patients with candidaemia were
used for validation studies. First, a cohort of 75 patients of African-American
descent with candidaemia was recruited at DUMC, and 54 patients of African-
American descent without candidaemia from the same wards served as a disease-
matched control group. Second, a cohort of 69 European surgical intensive care
unit patients, including 29 cases of invasive candidiasis (without candidaemia) and
40 non-infected controls, were recruited for the Funginos study, as described
elsewhere36.

Genotyping and quality control. The case and the control samples of the
discovery cohort were genotyped using the Immunochip according to Illumina’s
protocols26. We applied SNP quality-control filters to exclude SNPs with (a) a low
call rate (o99%), (b) a Hardy–Weinberg equilibrium of Po0.01 in control samples
only and (c) a MAF of o0.01. In the end, 118,989 SNPs were used for case-control
analysis. We also excluded 54 samples with a low genotyping rate (o98%) and
40 ethnic outlier samples based on multidimensional scaling analysis
(Supplementary Fig. 7)35. We included 217 candidaemia cases and 11,920 controls
of Caucasian descent in the discovery phase of the case-control association analysis.
The replication cohorts were genotyped at four SNPs using the Competitive
Allele-Specific PCR (KASP) system according to the manufacturer’s protocol
(LGC Genomics; http://www.lgcgenomics.com, formerly KBioscience). The KASP
allele-specific forward primers and common reverse primer were designed by
Kraken assay design and workflow management software (LGC Genomics,
formerly KBioscience). Results were analysed on KlusterKaller software (LGC
Genomics, formerly KBioscience) according to standard protocols and quality
controls.

Statistical analysis. In the discovery phase, the associations between Immunochip
SNPs and candidaemia susceptibility were tested by logistic regression after
adjusting for the first four components from the multidimensional scaling analysis
using PLINKv1.07 (ref. 37). A strong inflation in Immunochip studies has been
observed, as the selection of SNPs is biased towards only loci associated with
immune-mediated traits26. Therefore, we considered SNPs that map to non-
immune regions but are present on the Immunochip to calculate the inflation
factor. Comparison of the genetic inflation factor of all SNPs (l¼ 1.22) with the
genetic inflation factor of non-immune SNPs (l¼ 1.102) indicated that there was
little population stratification effect (Supplementary Fig. 8). We considered
Po5� 10� 8 as the threshold for significant association. The association to the
top-associated SNPs within the validation and replication cohorts was tested using
the Cochran–Armitage trend test, and meta-analysis was conducted using the

Mantel–Haenszel method. Heterogeneity across the two cohorts was examined
using the Breslow–Day test.

We tested the cumulative effects of three risk SNPs on candidaemia risk among
individuals carrying either 1 or 2 and more risk alleles. The odds ratios were
calculated relative to the individuals with no risk alleles for the three SNPs.

CD58/TAGAP knockdown and phagocytosis experiments. Human monocyte-
derived macrophages were obtained by first allowing peripheral blood mono-
nuclear cells to adhere to the plate for 90 min and the non-adherent cells were
washed away by phosphate-buffered saline. The remaining adherent monocytes
were differentiated into macrophages by incubating with RPMI containing M-CSF
(50 ng ml� 1) and 10% human pooled serum for 6 days38. Macrophages from five
different volunteers were transfected with CD58 siRNA (L-004538-00-0005),
TAGAP siRNA (L-008711-01-0005) or control siRNA (D-001810-10-20) by
Dharmafect 4 for 2 days (Thermo Scientific). Total RNA was isolated at 6 and 24 h,
and global gene expression was profiled using an Illumina Human HT-12
Expression BeadChip39. Differentially expressed genes by at least 1.25-fold between
control and CD58 siRNA cells were subjected to pathway enrichment analysis
using GeneNetwork analysis14. After siRNA transfection, macrophages were
exposed to live C. albicans at multiplicity of infection of 1 for 24 h, after which the
phagocytosis and fungal outgrowth was determined by microscopy. The role of
fungal germination was assessed using the yeast-locked Hgc1-deficient C. albicans
strain (provided by Dr Bernhard Hube, Jena University). Cytokine concentrations
were determined by enzyme-linked immunosorbent assay.

In vitro macrophage stimulation assays. The effect of SNPs in CD58 on cytokine
production was studied in monocyte-derived macrophages isolated from a cohort
of 66 healthy Europeans. Macrophages were incubated at 37 �C for 24 h with RPMI
culture medium, LPS (10 ng ml� 1, Sigma-Aldrich, MO, USA), or heat-killed
C. albicans yeasts or hyphae (1� 106 microorganisms per ml). Cytokines were
measured using an enzyme-linked immunosorbent assay (R&D Systems, MN,
USA), and the correlation between cytokine production and genotypes was tested
by the Wilcoxon rank sum test.

Systemic C. albicans infection in TAGAP-deficient mice. C57BL/6J and Tagap
loss-of-function female mice40,41 (8–12 weeks) were used for assessing their
susceptibility to C. albicans. The Tagap� /� mouse was reported in the original
publication by Bauer et al.40, the accession number for the gene targeted in this
knockout model is NM_145968, which corresponds to the Tagap gene. However,
Bauer et al.40 refer to this gene as Tagap1. To clarify the gene targeted in these
mice, we developed a quantitative reverse transcriptase-PCR method and showed
that the targeted mice lacked Tagap mRNA, consistent with the accession number
referenced in the original publication. See also MGI ID 3615484 for gene
information and MGI ID 3603008 for mouse strain information. The experiments
were approved by the Ethics Committee on Animal Experiments of the University
of Athens. Mice were injected with live C. albicans blastoconidia 5� 107 CFU per
mouse. The fungal loads in the liver and kidneys were assessed by microbiological
dilution plating on days 3 and 7 after infection. Cytokine production capacity was
assessed after stimulation of splenocytes (1� 105 per well) with C. albicans (1� 106

microorganisms per well).
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