English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Late glacial initiation of Holocene eastern Mediterranean sapropel formation

MPS-Authors
/persons/resource/persons79553

Grimm,  Rosina
Ocean Biogeochemistry, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;
IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37253

Maier-Reimer,  Ernst
Ocean Biogeochemistry, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37265

Mikolajewicz,  Uwe
Ocean Physics, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

ncomms8099.pdf
(Publisher version), 6MB

ncomms8099-s1.pdf
(Publisher version), 11MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Grimm, R., Maier-Reimer, E., Mikolajewicz, U., Schmiedl, G., Müller-Navarra, K., Adloff, F., et al. (2015). Late glacial initiation of Holocene eastern Mediterranean sapropel formation. Nature Communications, 6: 7099. doi:10.1038/ncomms8099.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0026-C315-4
Abstract
Recurrent deposition of organic-rich sediment layers (sapropels) in the eastern Mediterranean Sea is caused by complex interactions between climatic and biogeochemical processes. Disentangling these influences is therefore important for Mediterranean palaeo-studies in particular, and for understanding ocean feedback processes in general. Crucially, sapropels are diagnostic of anoxic deep-water phases, which have been attributed to deep-water stagnation, enhanced biological production or both. Here we use an ocean-biogeochemical model to test the effects of commonly proposed climatic and biogeochemical causes for sapropel S1. Our results indicate that deep-water anoxia requires a long prelude of deep-water stagnation, with no particularly strong eutrophication. The model-derived time frame agrees with foraminiferal δ13C records that imply cessation of deep-water renewal from at least Heinrich event 1 to the early Holocene. The simulated low particulate organic carbon burial flux agrees with pre-sapropel reconstructions. Our results offer a mechanistic explanation of glacial–interglacial influence on sapropel formation.