Supporting Information Figure S1: 13C enrichment trend in the microbial fractions fitted to an exponential decay function (only the highest to the lowest values were fitted to the function).

(A) RNA

\[y = 587e^{-0.052x} \]
\[R^2 = 0.88 \]
\[p = 0.006 \]

(B) DNA

\[y = 1165e^{-0.033x} \]
\[R^2 = 0.87 \]
\[p = 0.006 \]

(C) SMB

\[y = 1029e^{-0.003x} \]
\[R^2 = 0.73 \]
\[p = 0.007 \]

(D) PLFA

\[y = 4393e^{-0.001x} \]
\[R^2 = 0.92 \]
\[p = 0.002 \]
Supporting Information Figure S2(A-B): Isotope enrichment in different plant pools. X-axis represents time after end of pulse labelling and error bars represent standard error.
Supporting Information Figure S3: Isotope enrichment in bulk soil organic matter. X-axis represents time after end of pulse labelling and error bars represent standard error.
Supporting Information Figure S4: Isotope enrichment in microbially respired CO$_2$ (n=3). X-axis represents time after end of pulse labelling and error bars represent standard error. Note: the third time point in the time series does that follow the general decay fit which could be because this was the only sampling point in the early morning (12 h after the pulse labelling).
Supporting Information Figure S5: Isotope enrichment in total bacterial PLFA and RNA (n=3) over the time series. 13C incorporation in total bacterial PLFA was derived as the sum of 13C incorporation in all individual quantifiable bacterial PLFAs. X-axis represents time post the 10 h pulse labeling period and error bars represent standard error.
Supporting Information Figure S6: Correlation of 13C enrichment in microbially respired CO$_2$ with different microbial fractions. A 1:1 dotted line is also shown in the figure. A slope closest to one means a good coupling between microbial biosynthesis and the respiratory flux.

\[TMB: y = 2.76x - 20.8, R^2 = 0.79, p = 0.001 \]
\[RNA: y = 2.99x + 45.2, R^2 = 0.58, p = 0.017 \]
\[DNA: y = 5.1x + 19.6, R^2 = 0.37, p = 0.082 \]
\[PLFA: y = -0.04x + 112.4, R^2 = 1E-05, p = 0.99 \]
Supporting Information Figure S7: Size-based separation of RNA from soil microbial communities and pure cultures of E. coli and yeast on Agilent TapeStation-R6K ScreenTape. “Soil RNA EUB 338” is the captured 16S rRNA from the soil total RNA pool using magnetic bead capture hybridization (Miyatake et al., 2009). EUB 338 was the universal eubacterial probe used. E. coli and yeast were cultured in LB broth and RNA extracted using the standard phenol-chloroform extraction protocol (Griffiths et al., 2010).

References: