Studies on Iljimalide B. Preparation of the Seco-Acid and Identification of the Molecule’s “Achilles Heel”

Alois Fürstner, Christophe Aïssa, Carine Chevrier, Filip Teplý, Cristina Nevado, and Martin Tremblay

Preparation of Sulfone 5

\[
\text{HO-}COO\text{Me} \xrightarrow{a)} \text{S-1} \quad \text{S-2} \xrightarrow{b)} \text{S-3} \xrightarrow{c)} \text{5}
\]

\[
\text{S-4} \quad (E:Z = 25:75) \quad \text{S-4 (E)} \quad \text{S-4} \quad \text{COOEt}
\]

Scheme S-1. a) Benzothiazol-2-thiol (BTSH), PPh\(_3\), DEAD, THF, quant; b) Dibal-H, CH\(_2\)Cl\(_2\), −78°C; c) 2-phosphonopropionic acid triethylster, LiHMDS, THF, −78°C → −40°C, 80% (over both steps); d) PhSSPh (0.5 eq.), AIBN cat., THF, reflux, quant.; e) Mo\(_7\)O\(_{24}\)(NH\(_4\))\(_6\)\(_4\) H\(_2\)O cat., aq. H\(_2\)O\(_2\), EtOH, 98%.

The preparation of the required building blocks commenced with a Mitsunobu reaction\(^1\) of Roche ester S-1 with 2-mercapto-benzothiazole (BTSH), furnishing product S-2 which was reduced with Dibal-H to afford the corresponding aldehyde S-3. Despite considerable experimentation, olefination of crude S-3 by a Horner-Wadsworth-Emmons reaction

invariably delivered the \((Z)\)-rather than the required \((E)\)-isomer as the major product. The best results were obtained with LiHMDS (1.2 equiv.) as the base (80%, \(Z:E = 75:25\)), whereas the choice of other bases or the application of the Masamune-Roush protocol\(^2\) led to largely inferior yields. The unfavorable stereochemical outcome of the reaction was conveniently corrected by isomerization of the crude mixture of \(S-4\) with PhSSPh/AIBN in refluxing THF.\(^3\) Although this process was rather slow (4d), the required product was obtained in geometrically almost pure form (\(E:Z = 95:5\)). Subsequent oxidation of the sulfide group gave sulfone \(5\) which reacted smoothly with aldehyde \(6\) (see below) to give alkene \(7\) as described in the Text of the paper.

Preparation of Aldehyde 6

\[
\begin{align*}
S-5 & \xrightarrow{a)} S-6 \xrightarrow{b)} S-7 \xrightarrow{c)} S-8 \\
d) & \xrightarrow{d)} S-9 \xrightarrow{e)} S-10 \xrightarrow{f)} 6
\end{align*}
\]

Scheme S-2. a) \(\text{Ag}_2\text{O}, \text{Mel, MeCN, reflux}\); b) Dibal-H, CH\(_2\)Cl\(_2\), \(-78^\circ\text{C}\); c) Ph\(_3\)P=\(\text{C(\text{Me})COOEt}, \text{toluene, 70}^\circ\text{C, 62\% (over 3 steps)}\); d) TBSCI, Et\(_3\)N, DMAP cat., CH\(_2\)Cl\(_2\), RT, 99%; e) Dibal-H, CH\(_2\)Cl\(_2\), \(-78^\circ\text{C, 95\%}\); f) DMSO, (COCl\(_2\), Et\(_3\)N, CH\(_2\)Cl\(_2\), \(-78^\circ\text{C} \rightarrow \text{RT, 95\%}\).

Aldehyde \(6\) was prepared on large scale from commercial lactone \(S-5\) by adapting a literature route.\(^4\) Specifically, compound \(S-5\) was converted into the corresponding methyl ether \(S-6\) on treatment with \(\text{Mel and Ag}_2\text{O}\). Subsequent Dibal-H reduction gave lactol \(S-7\)

which was immediately subjected to a standard Wittig reaction with the stabilized ylide Ph₃P=C(Me)COOEt to give enoate S-8 as a single isomer. Protection of the -OH group as a TBS-ether prior to reduction of the ester in S-9 and reoxidation of the primary alcohol of the resulting product S-10 readily furnished the required aldehyde 6.

Preparation of Ketone 17

![Scheme S-3](image)

Scheme S-3. a) Bis(trimethylsilyl)acetylene, AlCl₃, CH₂Cl₂, 0°C, 83%.

Ketone 17 as the substrate for the Noyori transfer hydrogenation was prepared by an AlCl₃-mediated reaction of acid chloride S-11 with commercial bis-trimethylsilylethyne. The required mono-substitution product was obtained in 83% yield on a >16 g scale after convenient purification by Kugelrohr distillation.⁵
