English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Metformin and salinomycin as the best combination for the eradication of NSCLC monolayer cells and their alveospheres (cancer stem cells) irrespective of EGFR, KRAS, EML4/ALK and LKB1 status

MPS-Authors
/persons/resource/persons145238

Xiao,  Zhiguang
Ullrich, Axel / Molecular Biology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78730

Sperl,  Bianca
Ullrich, Axel / Molecular Biology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78812

Ullrich,  Axel
Ullrich, Axel / Molecular Biology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78233

Knyazev,  Pjotr
Ullrich, Axel / Molecular Biology, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

oncotarget-05-12877.pdf
(Any fulltext), 10MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Xiao, Z., Sperl, B., Ullrich, A., & Knyazev, P. (2014). Metformin and salinomycin as the best combination for the eradication of NSCLC monolayer cells and their alveospheres (cancer stem cells) irrespective of EGFR, KRAS, EML4/ALK and LKB1 status. ONCOTARGET, 5(24), 12877-12890.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0025-7445-2
Abstract
The presence of cancer stem cells (CSCs) is linked to preexisting or acquired drug resistance and tumor relapse. Therefore, targeting both differentiated tumor cells and CSCs was suggested as an effective approach for non-small cell lung cancer (NSCLC) treatment. After screening of chemotherapeutic agents, tyrosine kinase inhibitors (TKIs) or monoclonal antibody in combination with the putative stem cell killer Salinomycin (SAL), we found Metformin (METF), which modestly exerted a growth inhibitory effect on monolayer cells and alveospheres/CSCs of 5 NSCLC cell lines regardless of their EGFR, KRAS, EML4/ALK and LKB1 status, interacted synergistically with SAL to effectively promote cell death. Inhibition of EGFR (AKT, ERK1/2) and mTOR (p70 s6k) signaling with the combination of METF and SAL can be augmented beyond that achieved using each agent individually. Phospho-kinase assay further suggested the multiple roles of this combination in reducing oncogenic effects of modules, such as beta-catenin, Src family kinases (Src, Lyn, Yes), Chk-2 and FAK. Remarkably, significant reduction of sphere formation was seen under combinatorial treatment in all investigated NSCLC cell lines. In conclusion, METF in combination with SAL could be a promising treatment option for patients with advanced NSCLC irrespective of their EGFR, KRAS, EML4/ALK and LKB1 status.