日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Evidence of a cancer type-specific distribution for consecutive somatic mutation distances

MPS-Authors
/persons/resource/persons73765

Muino,  Jose M.
Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50074

Arndt,  Peter F.
Evolutionary Genomics (Peter Arndt), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource

http://www.ncbi.nlm.nih.gov/pubmed/25179009
(全文テキスト(全般))

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

Muino.pdf
(出版社版), 682KB

付随資料 (公開)
There is no public supplementary material available
引用

Muino, J. M., Kuruoglu, E. E., & Arndt, P. F. (2014). Evidence of a cancer type-specific distribution for consecutive somatic mutation distances. Computational Biology and Chemistry, 53, Pt A, 79-83. doi:10.1016/j.compbiolchem.2014.08.012.


引用: https://hdl.handle.net/11858/00-001M-0000-0025-20BE-B
要旨
Specific molecular mechanisms may affect the pattern of mutation in particular regions, and therefore leaving a footprint or signature in the DNA of their activity. The common approach to identify these signatures is studying the frequency of substitutions. However, such an analysis ignores the important spatial information, which is important with regards to the mutation occurrence statistics. In this work, we propose that the study of the distribution of distances between consecutive mutations along the DNA molecule can provide information about the types of somatic mutational processes. In particular, we have found that specific cancer types show a power-law in interoccurrence distances, instead of the expected exponential distribution dictated with the Poisson assumption commonly made in the literature. Cancer genomes exhibiting power-law interoccurrence distances were enriched in cancer types where the main mutational process is described to be the activity of the APOBEC protein family, which produces a particular pattern of mutations called Kataegis. Therefore, the observation of a power-law in interoccurence distances could be used to identify cancer genomes with Kataegis.