Supporting Information

Recovery of Bulk Proton Magnetization and Sensitivity Enhancement in Ultrafast Magic-Angle Spinning Solid-State NMR

Jean-Philippe Demers†*, Vinesh Vijayan‡, Adam Lange†

Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany

* Corresponding Author (demers@fmp-berlin.de)
† Department of Molecular Biophysics, Leibniz-Institut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
‡ Department of Chemistry, IISER Thiruvananthapuram, 695016, Kerala, India
Supplementary Figure S1. (a) Bulk 1H longitudinal relaxation rate measured by inversion-recovery. The blue line represents the fit with a mono-exponential recovery curve ($T_1 = 32 \pm 2.2$ s). (b) Decay curve recorded during a 1H spin-lock at 13.4 kHz RF. The blue line represents the fit with a mono-exponential decay curve ($T_{lp} = 13.9 \pm 0.4$ ms).

Pulse sequence to measure 1H spin-lock efficiency and 1H–13C decoupling efficiency

Used for the measurement of 1H spin-lock efficiency (Figure 1a, pulse scheme in Figure 2a) and 1H–13C decoupling efficiency (Figure 1b, pulse scheme in Figure 2b).

Options:

Spin-lock

l2=0 No spin-lock pulse
l2=1 1H spin-lock pulse before CP
;spinlock.pp
; Measurement of 1H–13C decoupling efficiency and 1H spin-lock efficiency.

;Options
; l2=0 : No spin-lock pulse
; l2=1 : 1H spin-lock pulse before CP

;--- Reference ---
; Recovery of bulk proton magnetization and sensitivity enhancement in ultra-fast Magic-Angle
; Spinning solid-state NMR, Jean-Philippe Demers, Vinesh Vijayan, Adam Lange, J Phys Chem B, 2015

; $OWNER=nmr
sp0=pl6 ; Syntax for TopSpin 2.x ; 1H CP power level
spw0=plw6 ; Syntax for TopSpin 3.x ; 1H CP power level

;============
; Parameters
;============

;p2 1H 90° pulse length
;p12 1H 90° pulse power level
;p16 1H spin-lock pulse length
;p16 1H spin-lock pulse power level
;p15 13C CP power level
;p16 1H CP power level
;p15 CP contact time
;sp0 1H CP shape
;sp15 13C CP shape
;pl12 1H decoupling power level during acquisition
;d1 Recycling delay between experiments

;============
; Protections
;============

1m
if "p2 > 1000" goto Problem
if "p15 > 10m" goto Problem
if "aq > 31m" goto Problem
if "d1 < 0.025s" goto Problem

goto PassParams
Problem, 1m
print "Parameters not accepted, ending."
goto HaltAcqu
PassParams, 1m

;==============
; Pulse program
;==============

1 ze accumulate into an empty memory
2 d1 do:f2 recycling delay, decoupler off
 lu f=q=0:f2
1ufq=cnst15:f1 ; frequency offset on 13C channel for band-selective CP schemes
10u p12:f2 p15:f1 ; set initial power levels

;--- 90° 1H ---
p2:f2 ph1

;--- 1H Spin-lock ---
if (l2==1)
{
 1u p16:f2 (p16 ph0):f2
}

;--- 1H --> 13C Cross-polarization ---
1u p16:f2 (p15 ph2):f1 (p15:sp0 ph0):f2
1u p112:f2 ; 1H decoupling power level
1u cpds2:f2 ; Acquisition 1H decoupling on

;--- Acquisition ---
go=2 ph31
```
1m do:ff  ; decoupler off
100m wr #0  ; save data to disk
HaltAcqu, 1m  ; jump address for protection files
exit  ; quit

# Phase cycle
#-------------------
ph1= 1 3  ; 1H 90° pulse
ph0= 0  ; 1H CP pulse
ph2= 0 0 2 2  ; 13C CP pulse
ph31= 0 2 2 0  ; 13C acquisition
```
Pulse sequence for flip-back experiment

Used for the measurement of sensitivity curve (Figure 4b) and signal enhancement (Figure 5), pulse scheme in Figure 2c.

Parameters:

The following composite pulse decoupling (CPD) programs must be employed:

```
cpdprg1='xix.cpd', cpdprg2='cw.cpd', cpdprg3='cw0_flip270.cpd', cpdprg4='cw0_flip90.cpd'
```

Options:

Cross-polarization

- $l_3=1$: Rectangular pulse on both 1H and 13C channels
- $l_3=2$: Shaped pulse on 1H, rectangular pulse on 13C
- $l_3=3$: Rectangular pulse on 1H, shaped pulse on 13C

Decoupling

- $l_4=0$: Reference (No flip pulse)
- $l_4=2$: Flip-back pulse
- $l_4=4$: Flip-down pulse
- $l_4=1$: Use alternative CPD program as specified by cpdprg1 (e.g. ‘xix.cpd’)

--- Reference ---


```
;flipback.pp

; Measurement of sensitivity curve and signal enhancement.

;i3=1 : Rectangular pulse on both 1H and 13C channels
;i3=2 : Shaped pulse on 1H, rectangular pulse on 13C
;i3=3 : Rectangular pulse on 1H, shaped pulse on 13C
;i4=0 : Reference (No flip pulse)
;i4=2 : Flip-back pulse
;i4=4 : Flip-down pulse
;i4=1 : Use alternative CPD program as specified by cpdprg1

;--- Reference ---


;OWNER=nmrsu

"sp0=p16" ;Syntax for TopSpin 2.x ; 1H CP power level
"spw0=p16" ;Syntax for TopSpin 2.x ; 1H CP power level
"sp15=p15" ;Syntax for TopSpin 2.x ; $^{13}$C CP power level
"spw15=p15" ;Syntax for TopSpin 2.x ; $^{13}$C CP power level
"cnst25=0" ;Counter for current scan number
```
Parameters

- `p2` 1H 90° pulse length
- `pl2` 1H 90° pulse power level
- `pl5` 13C CP power level
- `pl6` 1H CP power level
- `p15` CP contact time
- `sp0` 1H CP shape
- `sp15` 13C CP shape
- `p25` Duration of 1H CW decoupling pulse during acquisition
- `pl25` 1H CW decoupling power
- `pl12` 1H decoupling power level for alternative CPD program (cpdprg1, set l4=1)
- `d1` Recycling delay between experiments

 Protections

```plaintext
1m
if "p2 > 1000" goto Problem
if "p15 > 10m" goto Problem
if "aq > 31m" goto Problem
if "d1 < 0.025s" goto Problem
goto PassParams
Problem, 1m
print "Parameters not accepted, ending."
goto HaltAcqu
PassParams, 1m
```

Pulse program

```plaintext
1 ze ;accumulate into an empty memory
2 d1 do:f2 ;recycling delay, decoupler off
1u efq=0:f2
1u f=qcnst15:f1 ;frequency offset on 13C channel for band-selective CP schemes
10u pl2:f2 pl5:f1 ;set initial power levels

;--- 90° 1H ---
p2:f2 ph1

;--- 1H --> 13C Cross-polarization ---
1u pl6:f2 ;1H CP power level
if (l3==1)
    (p15 ph2):f1 (p15 ph0):f2 ;rectangular pulse on both channels
if (l3==2)
    (p15 ph2):f1 (p15:sp0 ph0):f2 ;shaped pulse on 1H, rectangular on 13C
if (l3==3)
    (p15:sp15 ph2):f1 (p15 ph0):f2 ;rectangular pulse on 1H, shaped on 13C

;--- 1H Decoupling during acquisition ---
if (l4==0)
    1u cpds2:f2 ;cw.cpd, CW decoupling pulse along X
else
    if (l4==1)
        1u pl12:f2
        1u cpds1:f2 ;Alternative CPD program
    else
        //--- Decoupling programs containing flip pulses ---
        ; Phase cycling instructions contained in CPD programs are ignored by some versions
        ; of TopSpin. To implement phase cycling of the last 90° pulse (‘flip pulse’), we use
        ; two CPD programs (cpdprg3 and cpdprg4) which alternate every scan.
        ; For the flip-back, the ‘flip’ pulse always has an opposite phase relative to ph1 (3 1),
        ; in order to flip 1H magnetization back to the Iz axis.
```
; For the flip-down, the 'flip' pulse always has the same phase as ph1 (1 3), further
; pushing the 1H magnetization down to the -Iz axis.
if "(l4/2+cnst25+ds)%2=1"
{
 lu cpds3:2 ;cw0_flip270.cpd
 ; This CPD program contains a CW pulse along X, then a 90° pulse along -Y
 ; It is executed on odd scans for flip-back, and even scans for flip-down.
}
if "(l4/2+cnst25+ds)%2=0"
{
 lu cpds4:2 ;cw0_flip90.cpd
 ; This CPD program contains a CW pulse along X, 90° pulse along Y
 ; It is executed on even scans for flip-back, and odd scans for flip-down.
 "cnst25=cnst25+1"
}
}

;--- Acquisition ---
go=2 ph31

1u do:2 ;decoupler off
100m wr #0 ;save data to disk
HaltAcqu, 1m
 ;jump address for protection files
exit ;quit

;----------------
; Phase cycle
;----------------

ph1 = 1 3 ; 1H 90° pulse
ph0 = 0 ; 1H CP pulse
ph2 = 0 0 2 2 ;13C CP pulse
ph31= 0 2 2 0 ;13C acquisition
Composite pulse decoupling (CPD) programs

cw.cpd

```plaintext
;OWNER=nmrsu

;--- 1H CW decoupling/spin-lock pulse, phase along X ---
1 p25:0 pl=pl25

;--- Do not pulse for the rest of the sequence ---
2 5m
jump to 2
```

cw0_flip270.cpd

```plaintext
;OWNER=nmrsu

;--- 1H CW decoupling/spin-lock pulse, phase along X ---
1 p25:0 pl=pl25

;--- 1H 90° flip pulse, phase along -Y ---
 p2:270 pl=pl2

;--- Do not pulse for the rest of the sequence ---
2 5m
jump to 2
```

cw0_flip90.cpd

```plaintext
;OWNER=nmrsu

;--- 1H CW decoupling/spin-lock pulse, phase along X ---
1 p25:0 pl=pl25

;--- 1H 90° flip pulse, phase along Y ---
 p2:90 pl=pl2

;--- Do not pulse for the rest of the sequence ---
2 5m
jump to 2
```

xix.cpd (Example of alternative CPD program)

```plaintext
0.3u fq=cnst21
0.5u pl=pl12
1 pcpd:0
   pcpd:180
jump to 1
```
Pulse sequence to measure remaining magnetization and magnetization recovery curves

Used for the measurement of 1H remaining magnetization (Figure 3) and recovery curve (Figure 4a), pulse scheme in Figure 2d.

Parameters:

The following composite pulse decoupling (CPD) programs must be employed:

cpdprg1=’xix.cpd’, cpdprg2=’cw.cpd’, cpdprg3=’cw0_flip270.cpd’, cpdprg4=’cw0_flip90.cpd’

Options:

Cross-polarization

l3=1 Rectangular pulse on both 1H and 13C channels
l3=2 Shaped pulse on 1H, rectangular pulse on 13C
l3=3 Rectangular pulse on 1H, shaped pulse on 13C

Content of the ‘mock’ experiment

l5=1 Reference experiment (no ‘mock’ experiment executed)
l5=2 Only the 1H 90° pulse and 1H spin-lock are executed in the ‘mock’ experiment
l5=3 The 1H 90° pulse and 1H–13C CP are executed in the ‘mock’ experiment
l5=4 The full ‘mock’ experiment (1H 90°, 1H–13C CP and CW 1H decoupling) is executed
l5=5 Full ‘mock’ experiment (reference, no flip pulse), magnetization recovery curve
l5=6 Full ‘mock’ experiment and flip-back pulse, magnetization recovery curve
l5=7 Full ‘mock’ experiment and flip-down pulse, magnetization recovery curve

Pre-saturation

l6=0 No pre-saturation
l6=2 Pre-saturation

recovery.pp

; Measurement of 1H remaining magnetization and recovery curve.

; Options
; l3=1 : Rectangular pulse on both 1H and 13C channels
; l3=2 : Shaped pulse on 1H, rectangular pulse on 13C
; l3=3 : Rectangular pulse on 1H, shaped pulse on 13C
; l5=1 : Reference experiment (no ‘mock’ experiment executed)
; l5=2 : Only the 1H 90° pulse and 1H spin-lock are executed in the ‘mock’ experiment
; l5=3 : The 1H 90° pulse and 1H–13C CP are executed in the ‘mock’ experiment
; l5=4 : The full ‘mock’ experiment (1H 90°, 1H–13C CP and CW 1H decoupling) is executed
; l5=5 : Full ‘mock’ experiment (reference, no flip pulse), magnetization recovery curve
; l5=6 : Full ‘mock’ experiment and flip-back pulse, magnetization recovery curve
; l5=7 : Full ‘mock’ experiment and flip-down pulse, magnetization recovery curve
; l6=0 : No pre-saturation
; l6=2 : Pre-saturation
--- Reference ---

$OWNER=nmrsu

"sp0=p16" ;Syntax for TopSpin 2.x ; 1H CP power level
"spv0=p16v" ;Syntax for TopSpin 3.x ; 1H CP power level
"sp15=p15v" ;Syntax for TopSpin 2.x ; 13C CP power level
"spw15=p15w" ;Syntax for TopSpin 3.x ; 13C CP power level

--- Parameters ---

%;p2 1H 90° pulse length
%;p27 Duration of one high-power pre-saturation pulse (two pulses, X and -X, are executed).
%;pl2 Power level for 1H 90° pulse and high-power pre-saturation pulses
%;pl5 13C CP power
%;pl6 1H CP power
%;p15 CP contact time
%;sp0 1H CP shape
%;sp15 13C CP shape
%;pl12 1H decoupling power during acquisition ('Read' experiment)
%;p25 Duration of decoupling pulse during 'mock' experiment
%;p15 1H decoupling power during 'mock' experiment
%;d1 Recycling delay before the 'mock' experiment
%;d2 Recovery delay between the 'mock' and the 'read' experiment

--- Protections ---

1m
if "p1 > 1000" goto Problem
if "p2 > 1000" goto Problem
if "p15 > 10m" goto Problem
if "p27 > 10m" goto Problem
if "aq > 31m" goto Problem
if "dl < 0.025s" goto Problem
goto PassParams
Problem, 1m
print "Parameters not accepted, ending."
goto HaltAcqu
PassParams, 1m

--- Pulse program ---

1 ze ;accumulate into an empty memory
2 lu do:f2 ;decoupler off
1u f=0:f2
1u f=cnst15:f1 ;frequency offset on 13C channel for band-selective CP schemes

--- 1H Pre-saturation ---

if (16=0)
| 1u p12:f2
| p2:f2 ph21 ;90° 1H pulse along Y
| p27*0.5:f2 ph10 ;1H spin-lock presat pulse along X
| p27*0.5:f2 ph12 ;1H spin-lock presat pulse along -X
| d1 ;recycling delay before the 'mock' experiment

--- Mock experiment: 90° 1H ---

if (15<5)
| 1u p12:f2
| p2:f2 ph1 ;For measurement of remaining 1H magnetization amounts, the transverse 1H magnetization generated by the 'mock' experiment is preserved by the phase cycling (ph1).
} else {
| 1u p12:f2
| p2:f2 ph21 ;For measurement of the 1H recovery behavior, the transverse 1H magnetization generated by the 'mock' experiment is discarded by the phase cycling (ph21).
if (l5==2) {
 if (l3==2)
 {
 (p15:sp0 ph20):f2
 ;shaped pulse on 1H
 }
 else
 {
 (p15 ph20):f2
 ;rectangular pulse on 1H
 }
}
if (l5>2) {
 ;--- Mock experiment: 1H --> 13C Cross-polarization ---
 1u pl5:f1 pl6:f2
 ;13C and 1H CP power level
 if (l3==1)
 {
 (p15 ph2):f1 (p15 ph20):f2
 ;rectangular pulse on both channels
 }
 if (l3==2)
 {
 (p15 ph2):f1 (p15:sp0 ph20):f2
 ;shaped pulse on 1H, rectangular on 13C
 }
 if (l3==3)
 {
 (p15:sp15 ph2):f1 (p15 ph20):f2
 ;rectangular pulse on 1H, shaped on 13C
 }
}
 ;--- Mock experiment: 1H decoupling ---
 if (l5>3)
 {
 1u pl25:f2
 ;1H decoupling power for 'mock' experiment
 (p25 ph20):f2
 ;CW decoupling on 1H
 }
 ;--- Mock experiment: Flip pulses ---
 1u pl12:f2
 if (l5==6)
 {
 p2:f2 ph23
 ;1H 90° flip-back (opposite phase to initial 90° pulse)
 }
 if (l5==7)
 {
 p2:f2 ph21
 ;1H 90° flip-down (same phase to initial 90° pulse)
 }
};-------------------
; 'Read' experiment
;-------------------
;Detection experiment with the same CP conditions
; as the 'mock' experiment but with XIX decoupling during acquisition

if (l5>4)
{
 d2
 ;Delay between the 'mock' and the 'read' experiment.
 p2:f2 ph1
}
;For measurement of remaining 1H magnetization amounts, the 'read' experiment starts directly
;after the 'mock' experiment, without any delay. The remaining transverse 1H magnetization
;is then directly spin-locked by the 1H CP pulse of the 'read' experiment.

if (l5>3)
{
 1u pl5:f1 pl6:f2
 ;13C and 1H CP power level
 if (l3==1)
 {
 (p15 ph2):f1 (p15 ph0):f2
 ;rectangular pulse on both channels
 }
 if (l3==2)
 {
 (p15 ph2):f1 (p15:sp0 ph0):f2
 ;shaped pulse on 1H, rectangular on 13C
 }
if (l3==3)
{
 (p15:sp15 ph2):f1 (p15 ph0):f2 ; rectangular pulse on 1H, shaped on 13C
}
1u p112:f2 ; 1H decoupling power level
1u cpds1:f2 ; Acquisition 1H decoupling on

--- Acquisition ---
go=2 ph31
1u do:f2 ; decoupler off
wr #0 ; save data to disk
HaltAcqu, 1m
 ; jump address for protection files
exit ; quit

--- Phase cycle ---

--- Mock experiment phases ---
ph21= 1 ; 1H 90° (pre-sat. and 'mock' experiment)
ph10= 0 ; 1H presat X
ph12= 2 ; 1H presat X
ph20= 0 ; 1H spin-lock
ph22= 1 ; 13C spin-lock (SOCP)
ph23= 3 ; 1H flip-back

--- 'Read' experiment phases ---
ph1 = 1 3 ; 1H 90°
ph0 = 0 0 0 0 2 2 2 2 ; 1H CP pulse
ph2 = 0 0 2 2 0 0 2 2 1 1 3 3 1 1 3 3 ; 13C CP pulse
ph31= 0 2 2 0 2 0 0 2 1 3 3 1 3 1 3 ; 13C acquisition
Full references

