OBSERVATIONS

THE ART OF RISK COMMUNICATION

Why do single event probabilities confuse patients?
Statements of frequency are better for communicating risk

Gerd Gigerenzer director, Mirta Galesic researcher
Centre for Adaptive Behaviour and Cognition, Max Planck Institute for Human Development, Berlin

The newsreader announces a 30% chance of rain tomorrow. Thirty per cent of what? Most people in Berlin think that it will rain tomorrow 30% of the time: for seven or eight hours. Others believe that it will rain tomorrow in 30% of the region, so probably not where they live. In New York the majority believe that it will rain on 30% of the days for which the prediction was made. That is, most likely it won’t rain tomorrow.

A chance of rain tomorrow is a single event probability. It refers to a unique event, such as rain tomorrow, and by definition does not specify a reference class. But people think in terms of classes: time, region, or days. These are not the only ones. As a woman in New York explained, “I know what 30% means: three meteorologists think it will rain, and seven not.”

It is often said that people cannot think in terms of probabilities. But the real problem here is professionals’ risk communication. Using a frequency statement instead of a single event probability, meteorologists could state clearly that “it will rain on 30% of the days for which we make this prediction.”

New technologies have enabled meteorologists to add numerical precision to mere verbal statements (“it will be likely to rain tomorrow”), but little attention has been paid to the art of risk communication.

In healthcare the situation is similar. A psychiatrist used to prescribe fluoxetine to patients with depression. He always explained potential side effects, including loss of sexual interest and impotence: “If you take the medication, you have a 30-50% chance of developing a sexual problem.”

Consistent with the ambiguity of the statement, people thought of different reference classes (“it will be likely to develop a sexual problem,” such as impotence or loss of sexual interest, after taking a popular drug for depression. Consistent with the ambiguity of the statement, people thought of different reference classes (table⇓), with interpretations varying more widely among the older group. Although misunderstanding is typically attributed to innumeracy, the respondents’ level of numeracy made next to no difference.

The problem is in the art of communication, not simply in people’s minds.

Using probabilities without specifying a reference class is widespread in communication of risk in healthcare. For instance, the Mayo Clinic announced: “The Food and Drug Administration (FDA) says that an extensive analysis of clinical trials showed that antidepressants may cause or worsen suicidal thinking or behavior in children and adolescents. The analysis showed that children taking antidepressants had about a 4% chance of developing suicidal thoughts or behavior, compared with only a 2% chance in children taking a sugar pill (placebo).”

What does it mean for a child to have a 4% chance of suicidal thoughts or behaviour? It remains unclear. Some parents might think that this occurs to 4% of children who take antidepressants, while others might believe that their child will have suicidal thoughts 4% of the time or that 4% of the pills are flawed and cause suicidal thoughts.

The US Centers for Disease Control and Prevention publicises that “condoms are 85-98% effective at preventing pregnancy.”

No reference class is specified on that page. A woman contemplating the use of condoms might think that:

a) she will get pregnant after 2-15% of times she has sex
b) 2-15% of women relying on condoms get pregnant
c) 2-15% of condoms are defective, or
d) 2-15% of men don’t know how to use a condom safely. Other websites make it clear that the effectiveness of birth control methods refers to “the number of women out of 100 who will have an unplanned pregnancy in the first year of using a method.”

The official website of the US Prostate Cancer Institute reports that “men have a 40% to 90% chance of experiencing retrograde ejaculation after prostatectomy.” An ordinary man might think this estimate refers to the proportion of his sexual acts or to the proportion of men with prostatectomy where retrograde ejaculation occurs at least once—or to something else altogether.

In sum, single event probabilities confuse patients because they do not specify a reference class. Good communication of risk requires a clear statement of what a probability refers to. Although necessary, this step alone is not sufficient, given that some patients misinterpret risks even when a reference class is given. With the advance of personalised medicine and genetic counselling, doctors and patients will be overwhelmed by probabilities for individual patients. Frequency statements can help reduce potential confusion because they always refer to a class and are easily understood.

Table 1 | Interpretations of “30-50% chance of developing a sexual problem” after taking a drug

<table>
<thead>
<tr>
<th>Interpretation</th>
<th>% of respondents aged 18-35 years (n=117)</th>
<th>% of respondents aged 60-77 years (n=73)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low numeracy* (n=43)</td>
<td>High numeracy* (n=74)</td>
</tr>
<tr>
<td>A: 30-50% of patients taking the drug will have sexual problems</td>
<td>65</td>
<td>78</td>
</tr>
<tr>
<td>B: Patients taking the drug will have a problem in 30-50% of their sexual encounters</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>C: Patients taking the drug will find sexual intercourse to be 30-50% less enjoyable than usual</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>D: Something else</td>
<td>14</td>
<td>8</td>
</tr>
</tbody>
</table>

* Numeracy defined as high or low according to median split across both groups on a numeracy rating consisting of the 12 items from Lipkus et al and Schwartz et al.15