日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Flamingo, a seven-pass transmembrane cadherin, cooperates with Netrin/Frazzled in Drosophila midline guidance

MPS-Authors
/persons/resource/persons129897

Organisti,  Christina
Max Planck Research Group: Sensory Neurogenetics / Grunwald-Kadow, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons38883

Hein,  Irina
Max Planck Research Group: Sensory Neurogenetics / Grunwald-Kadow, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons38867

Kadow,  Ilona C. Grunwald
Max Planck Research Group: Sensory Neurogenetics / Grunwald-Kadow, MPI of Neurobiology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Organisti, C., Hein, I., Kadow, I. C. G., & Suzuki, T. (2015). Flamingo, a seven-pass transmembrane cadherin, cooperates with Netrin/Frazzled in Drosophila midline guidance. GENES TO CELLS, 20(1), 50-67. doi:10.1111/gtc.12202.


引用: https://hdl.handle.net/11858/00-001M-0000-0024-B612-5
要旨
During central nervous system development, several guidance cues and receptors, as well as cell adhesion molecules, are required for guiding axons across the midline and along the anterior-posterior axis. In Drosophila, commissural axons sense the midline attractants Netrin A and B (Net) through Frazzled (Fra) receptors. Despite their importance, lack of Net or fra affects only some commissures, suggesting that additional molecules can fulfill this function. Recently, planar cell polarity (PCP) proteins have been implicated in midline axon guidance in both vertebrate and invertebrate systems. Here, we report that the atypical cadherin and PCP molecule Flamingo/Starry night (Fmi/Stan) acts jointly with Net/Fra signaling during midline development. Additional removal of fmi strongly increases the guidance defects in Net/fra mutants. Rescue and domain deletion experiments suggest that Fmi signaling facilitates commissural pathfinding potentially by mediating axonal fasciculation in a partly homophilic manner. Altogether, our results indicate that contact-mediated cell adhesion via Fmi acts in addition to the Net/Fra guidance system during axon pathfinding across the midline, underlining the importance of PCP molecules during vertebrates and invertebrates midline development.