日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Hydrogenolysis of Cellulose over Cu-Based Catalysts—Analysis of the Reaction Network

MPS-Authors
/persons/resource/persons59036

Tajvidi,  K.
Research Group Palkovits, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58862

Palkovits,  R.
Research Group Palkovits, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Tajvidi, K., Hausoul, P. J. C., & Palkovits, R. (2014). Hydrogenolysis of Cellulose over Cu-Based Catalysts—Analysis of the Reaction Network. ChemSusChem, 7(5), 1311-1317. doi:10.1002/cssc.201300978.


引用: https://hdl.handle.net/11858/00-001M-0000-0024-A697-7
要旨
A series of polyols, carbohydrates, and cellulose were tested in the aqueous, CuO/ZnO/Al2O3-catalyzed hydrogenolysis reaction at 245 °C and 50 bar H2. The compositions of liquid-phase products were analyzed; based on these results a unified reaction mechanism is proposed that accounts for the observed product distribution. Elementary transformations such as dehydration, dehydrogenation/hydrogenation, Lobry de Bruyn–van Ekenstein isomerization and retro-aldol cleavage were identified as most important for controlling the selectivity of simple polyols and carbohydrates. For cellulose the product distribution is considerably different than for glucose or sorbitol, indicating a change in the reaction pathway. Therefore, next to the traditional hydrolysis of the glycosidic bond, an additional depolymerization mechanism involving only the reducing ends of cellulose oligomers is proposed to account for this observation.