English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Scaling laws for the heterogeneously heated free convective boundary layer

MPS-Authors
/persons/resource/persons73302

van Heerwaarden,  Chiel
Max Planck Research Group Turbulent Mixing Processes in the Earth System, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37262

Mellado,  Juan-Pedro
Max Planck Research Group Turbulent Mixing Processes in the Earth System, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons59500

de Lozar,  Alberto
Max Planck Research Group Complex Dynamics and Turbulence, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

van Heerwaarden, C., Mellado, J.-P., & de Lozar, A. (2014). Scaling laws for the heterogeneously heated free convective boundary layer. Journal of the Atmospheric Sciences, 71, 3975-4000. doi:10.1175/JAS-D-13-0383.1.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-4ADE-7
Abstract
The heterogeneously heated free convective boundary layer (CBL) is investigated by means of dimensional analysis and results from large-eddy simulations (LES) and direct numerical simulations (DNS). The investigated physical model is a CBL that forms in a linearly stratified atmosphere heated from the surface by square patches with a high surface buoyancy flux. Each simulation has been run long enough to show the formation of a peak in kinetic energy, corresponding to the "optimal" heterogeneity size with strong secondary circulations, and the subsequent transition into a horizontally homogeneous CBL. Scaling laws for the time of the optimal state and transition and for the vertically integrated kinetic energy (KE) have been developed. The laws show that the optimal state and transition do not occur at a fixed ratio of the heterogeneity size to the CBL height. Instead, these occur at a higher ratio for simulations with increasing heterogeneity sizes because of the development of structures in the downward-moving air that grow faster than the CBL thickness. The moment of occurrence of the optimal state and transition are strongly related to the heterogeneity amplitude: stronger amplitudes result in an earlier optimal state and a later transition. Furthermore, a decrease in patch size combined with a compensating increase in patch surface buoyancy flux to maintain the energy input results in decreasing KE and a later transition. The simulations suggest that a CBL with a heterogeneity size smaller than the initial CBL height has less entrainment than a horizontally homogeneous CBL, whereas one with a larger heterogeneity size has more.