English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Neural mechanisms of context- dependent processing of CO2 avoidance behavior in fruit flies

MPS-Authors
/persons/resource/persons79245

Siju,  K. P.
Max Planck Research Group: Sensory Neurogenetics / Grunwald-Kadow, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons38774

Bräcker,  Lasse B.
Max Planck Research Group: Sensory Neurogenetics / Grunwald-Kadow, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons38867

Kadow,  I. C. Grunwald
Max Planck Research Group: Sensory Neurogenetics / Grunwald-Kadow, MPI of Neurobiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Siju, K. P., Bräcker, L. B., & Kadow, I. C. G. (2014). Neural mechanisms of context- dependent processing of CO2 avoidance behavior in fruit flies. FLY, 8(2), 68-74. doi:10.4161/fly.28000.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-36AC-7
Abstract
The fruit fly, Drosophila melanogaster, innately avoids even low levels of CO2. CO2 is part of the so-called Drosophila stress odor produced by stressed flies, but also a byproduct of fermenting fruit, a main food source, making the strong avoidance behavior somewhat surprising. Therefore, we addressed whether feeding states might influence the fly's behavior and processing of CO2. In a recent report, we showed that this innate behavior is differentially processed and modified according to the feeding state of the fly. Interestingly, we found that hungry flies require the function of the mushroom body, a higher brain center required for olfactory learning and memory, but thought to be dispensable for innate olfactory behaviors. In addition, we anatomically and functionally characterized a novel bilateral projection neuron connecting the CO2 sensory input to the mushroom body. This neuron was essential for processing of CO2 in the starved fly but not in the fed fly. In this Extra View article, we provide evidence for the potential involvement of the neuromodulator dopamine in state-dependent CO2 avoidance behavior. Taken together, our work demonstrates that CO2 avoidance behavior is mediated by alternative neural pathways in a context-dependent manner. Furthermore, it shows that the mushroom body is not only involved in processing of learned olfactory behavior, as previously suggested, but also in context-dependent innate olfaction.