Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Decomposition synthesis of tuneable, macroporous carbon foams from crystalline precursors via in situ templating

MPG-Autoren
/persons/resource/persons121767

Ressnig,  Debora
Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121208

Corbiere,  Tristan
Christina Giordano, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons41515

Lunkenbein,  Thomas
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22243

Willinger,  Marc Georg
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons1057

Antonietti,  Markus
Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

c4ta03646h.pdf
(Verlagsversion), 790KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ressnig, D., Corbiere, T., Lunkenbein, T., Braun, U., Willinger, M. G., & Antonietti, M. (2014). Decomposition synthesis of tuneable, macroporous carbon foams from crystalline precursors via in situ templating. Journal of Materials Chemistry A, 2(42), 18076-18081. doi:10.1039/c4ta03646h.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0024-3667-1
Zusammenfassung
A flexible, sustainable, one-step thermal decomposition route for the synthesis of hierarchical, heteroatom doped carbon foams is presented. Task-specific semi-organic crystals combine functions for three different purposes: the carbon and heteroatom source, a foaming agent (CO2) and an in situ generable template (NaCl). Insights to the decomposition pathway were gained through FTIR/MS coupled TGA and an ultrafast out-of-furnace heating procedure and the products were analysed with (HR)SEM/TEM, EELS, FTIR, and N2 sorption. The resulting macroporous carbon foams are excellent supports for metallic nanoparticles due to their hierarchical structure, high surface area and tuneable heteroatom contents. This was demonstrated for catalytically active copper or the magnetic CoNi alloy for water purification.