English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Total Syntheses of (S)-(−)-Zearalenone and Lasiodiplodin Reveal Superior Metathesis Activity of Ruthenium Carbene Complexes with Imidazol-2-ylidene Ligands

MPS-Authors
/persons/resource/persons58380

Fürstner,  Alois
Research Department Fürstner, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons135965

Thiel,  Oliver R.
Research Department Fürstner, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons134974

Kindler,  Nicole
Research Department Fürstner, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Bartkowska,  Beata
Service Department Krüger (XRAY), Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)

[122]SI.pdf
(Supplementary material), 2MB

Citation

Fürstner, A., Thiel, O. R., Kindler, N., & Bartkowska, B. (2000). Total Syntheses of (S)-(−)-Zearalenone and Lasiodiplodin Reveal Superior Metathesis Activity of Ruthenium Carbene Complexes with Imidazol-2-ylidene Ligands. The Journal of Organic Chemistry, 65(23), 7990-7995. doi:10.1021/jo0009999.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-34DD-5
Abstract
Total syntheses of the bioactive orsellinic acid derivatives zearalenone 3 and lasiodiplodin 1 are reported based on a ring-closing metathesis (RCM) reaction of styrene precursors as the key steps. These and closely related macrocyclizations are catalyzed with high efficiency by the “second generation” ruthenium carbene catalyst 5 bearing a N-heterocyclic carbene ligand, whereas the standard Grubbs carbene 4 fails to afford any cyclized product. Only the (E)-isomer of the macrocyclic cycloalkene is formed in all cases. The substrates for RCM can be obtained either via a Stille cross-coupling reaction of tributylvinylstannane or, even more efficiently, by Heck reactions of the aryl triflate precursors with pressurized ethene. Furthermore, the synthesis of 1 via RCM is compared with an alternative approach employing a low-valent titanium-induced McMurry coupling of dialdehyde 47 for the formation of the large ring. This direct comparison clearly ends in favor of metathesis which turned out to be superior in all preparatively relevant respects.