Molecular Basis of the Dynamic Structure of the TIM23 Complex in the Mitochondrial Intermembrane Space

Rakhi Bajaj, Łukasz Jaremko, Mariusz Jaremko, Stefan Becker, and Markus Zweckstetter

1Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
2German Center for Neurodegenerative Diseases (DZNE), 37077 Göttingen, Germany
3Center for the Molecular Physiology of the Brain, University Medicine Göttingen, 37073 Göttingen, Germany

*Correspondence: markus.zweckstetter@dzne.de
http://dx.doi.org/10.1016/j.str.2014.07.015

SUMMARY

The presequence translocase TIM23 is a highly dynamic complex in which its subunits can adopt multiple conformations and undergo association-dissociation to facilitate import of proteins into mitochondria. Despite the importance of protein-protein interactions in TIM23, little is known about the molecular details of these processes. Using nuclear magnetic resonance spectroscopy, we characterized the dynamic interaction network of the intermembrane space domains of Tim23, Tim21, Tim50, and Tom22 at single-residue level. We show that Tim23IMS contains multiple sites to efficiently interact with the intermembrane space domain of Tim21 and to bind to Tim21, Tim50, and Tom22. In addition, we reveal the atomic details of the dynamic Tim23IMS-Tim21IMS complex. The combined data support a central role of the intermembrane space domain of Tim23 in the formation and regulation of the presequence translocase.

INTRODUCTION

More than 99% of all mitochondrial proteins are synthesized in the cytosol and traverse the mitochondrial membranes to reach their final destination (Neupert and Herrmann, 2007). Preprotein import is based on the coordinated action of hetero-oligomeric translocases in the outer (TOM) and inner (TIM) mitochondrial membranes (Bauer et al., 2000; Pfanner, 1998; Ryan and Jensen, 1995; Schatz, 1996). Sorting of preproteins to the mitochondrial matrix and the inner mitochondrial membrane is achieved by protease cleavage and have been proposed to traverse the outer mitochondrial membrane. In addition, residues 50–96 of Tim23 were proposed to dimerize and regulate channel activity (Bauer et al., 1996). Crosslinks and mutations in this region affect the association with various other subunits including Tim50 and Tim21 (Gevorkyan-Airapetov et al., 2009; Tamura et al., 2009)

TIM23 contains the core proteins Tim23, Tim17, and Tim50, as well as Mgr2 and Tim21 as accessory subunits and the motor-associated proteins Pam17, Pam16-18, Tim44, and mtHsp (Chacinska et al., 2003; Mokranjac et al., 1997; Schulz et al., 2011), (2) formation of the translocation contact (Albrecht et al., 2006; Chacinska et al., 2003; Mokranjac et al., 2005; Shiota et al., 2011; Tamura et al., 2009), and (3) regulation of the pore across the inner membrane (Martinez-Caballero et al., 2007; Meinecke et al., 2006). Indeed, in vivo and in vitro crosslinking studies have provided support for a variety of IMS interactions such as Tim23-Tim50, Tim21-Tim23, Tom22-Tim50, Tom17-Pam18, and Pam17-Tim23 (Chacinska et al., 2005; Hutu et al., 2008; Lytovchenko et al., 2013; Marom et al., 2011; Moczko et al., 1997; Shiota et al., 2011; Tamura et al., 2009; Yamamoto et al., 2002). In addition, the incoming preprotein can be crosslinked to the IMS domains of many of the aforementioned subunits (Geissler et al., 2002; Moczko et al., 1997; Schulz et al., 2011; Shiota et al., 2011; Tamura et al., 2009).

The IMS domain of Tim23 plays a key role for preprotein import (Davis et al., 2000; Donzeau et al., 2000; Gevorkyan-Airapetov et al., 2009; Popov-Celeketi et al., 2008; Tamura et al., 2009; Truscott et al., 2001). In Saccharomyces cerevisiae, Tim23IMS consists of the N-terminal 96 residues of Tim23. Tim23IMS is intrinsically disordered in vitro and contains a binding site for presequences (de la Cruz et al., 2010). In intact mitochondria, the first 20 amino acids of Tim23IMS are sensitive to protease cleavage and have been proposed to traverse the outer mitochondrial membrane. In addition, residues 50–96 of Tim23 were proposed to dimerize and regulate channel activity (Bauer et al., 1996). Crosslinks and mutations in this region affect the association with various other subunits including Tim50 and Tim21 (Gevorkyan-Airapetov et al., 2009; Tamura et al., 2009).

Despite the importance of protein-protein interactions within the TIM23 complex, little is known about the molecular details of these interactions. At present, only the 3D structure of a presequence in complex with the cytosolic domain of Tom20 has been resolved (Abe et al., 2000), whereas no 3D structure of a...
protein-protein complex within or between the translocases is known. Here we investigated the protein interaction network of the intermembrane space domain of Tim23, the central component of the TIM23 complex, at the residue level and determined the atomic details of the Tim23IMS-Tim21IMS complex. The combined data support a central role of Tim23 IMS in the formation and dynamic regulation of the TIM23 complex.

RESULTS

Three Tim23 Sites Bind to Tim21IMS

The dynamic association and dissociation of Tim21 with the core subunits of TIM23 has been proposed to regulate the sorting of the preprotein either to the inner mitochondrial membrane or to the mitochondrial matrix (Chacinska et al., 2005; van der Laan et al., 2007, 2010). In addition, Tim23IMS has been crosslinked to Tim21 in vivo (Lytvchenko et al., 2013; Tamura et al., 2009). To obtain insight into the interaction of the IMS domains of Tim23 and Tim21 at single-residue resolution, we used nuclear magnetic resonance (NMR) spectroscopy. To this end, we titrated 15N-labeled Tim23 IMS with increasing amounts of unlabeled Tim21 IMS. The addition of Tim21IMS caused progressive changes in NMR signal intensity and position in distinct regions of Tim23IMS (Figure 1 A). NMR signals of residues 67–74 and 90–96 were strongly broadened and shifted, identifying them as anchor sites for Tim21IMS. In addition, residues 1–7 showed pronounced signal attenuation (Figure 1 A), whereas the gradual signal decrease from residues 30 to 60 is likely due to enhanced NMR relaxation times as a consequence of binding of residues 67–74 to the globular structure of Tim21IMS. To validate a direct interaction of Tim21IMS with Tim23 IMS, we attached the paramagnetic tag MTSL to two sites in Tim21 IMS. The two attachment sites, 114 and 128, were in proximity to the Tim21 IMS residues that are involved into binding to Tim23 IMS (see below and Figures 1B and 1C). The MTSL-tagged Tim21 IMS variants were then added to Tim23 IMS in a 1:1 molar ratio. Pronounced PRE broadening was observed in the three regions of Tim23 (Figures 1B and 1C), which showed strong chemical shift perturbation, demonstrating a direct interaction of these regions with Tim21IMS. Residues 1–7, 68–74, and 90–96 consist of the sequences MSWLFGD, VEYLDLE, and SRLGTDD, respectively. All three residue stretches contain an aromatic residue at position i (F5, Y70, W93) and an aspartic acid at position i+2. In addition, the stretches 68VEYLDLE74 and 90SRGWTD96 contain at least one additional negatively charged residue, whereas an additional aromatic residue is located at the N terminus. Taken together, the data demonstrate that three distinct regions in Tim23IMS participate in complex formation with Tim21IMS.

Rapid Exchange of Tim23 Sites with a Single Tim21 Binding Pocket

Next, we identified the binding site of Tim23IMS on Tim21IMS. Concentration-dependent changes in NMR chemical shifts were observed for the Tim24IMS residues F109, V113, S114, V116 and E117, and 138–144 upon addition of Tim23IMS (Figure 2 A). Quantitative analysis of the binding curves determined the Kd value as 153 ± 67 μM. Notably, surface plasmon resonance of immobilized Tim23 IMS pointed to a much lower Kd of ~28 μM (Lytovchenko et al., 2013). However, because Tim23IMS is known to bind to hydrophobic environments such as membranes (Donzeau et al., 2000) and the Tim23MS-Tim21IMS interaction involves three Tim23 segments that are in rapid exchange (Figure 1), analysis of the interaction by surface plasmon resonance is complicated. The residues identified with NMR analysis are located in β strand 1 and on one side of the α helix 1 of Tim23MS.
Further support for the rapid exchange of multiple binding motifs of Tim23IMS with a common Tim21 binding site was provided by paramagnetic relaxation enhancement: attachment of a MTSL-tag to either residue 11 of Tim23, i.e., the N-terminal binding region of Tim23, or residue 67, which is in proximity to the binding region 2 in Tim23, caused highly similar paramagnetic broadening in Tim21IMS (Figures 2C and 2D). The Tim21IMS residues that form the shallow binding pocket for binding to Tim23IMS are conserved (Figure 2E).
the complex nature of this interaction, we analyzed the Tim21IMS interaction of a peptide comprising the N-terminal 13 residues of Tim23 (Figure 3A). In addition, in a separate experiment, the binding of a peptide comprising residues 61–96 of Tim23 IMS to Tim21IMS was measured (Figure 3B). Tim23(1–13) contains the N-terminal Tim21-binding site, whereas Tim23(61–96) contains the other two interacting residue stretches. Stepwise addition of each of the Tim23 fragments caused the same chemical shift trajectories of Tim21 IMS residues as observed in the binding studies with the full Tim23 IMS domain (Figures 3A and 3B). However, the magnitude of chemical shift changes was significantly smaller in case of the peptides. Quantitative analysis indicated a K_d of 396 ± 65 μM for Tim23(61–96), that is approximately 2-fold higher than that of Tim23(1–96) (Figure S1 available online).

Dynamic Structure of the Tim21IMS-Tim23IMS Complex

To obtain an atomic resolution view of the association of Tim23IMS with Tim21IMS, we characterized the 3D structure of Tim23IMS in complex with the three Tim23 binding motifs. This was achieved by determination of the solution structure of Tim23IMS, followed by NMR-driven docking of the Tim23IMS binding motifs. The 3D structure of unbound Tim21IMS was determined based on nearly complete chemical shift assignment and a large number of nuclear Overhauser effect (NOE) distance restraints (Figure 4 and Table 1). Comparison of the solution structure of Tim21IMS with the one observed in the crystal (Albrecht et al., 2006) showed that the core of the structures is highly similar. However, residues 144–153, which are in spatial proximity to the Tim23 binding site (Figure 2), do not form a β hairpin in solution but are dynamic (Figure 4B). Indeed, residues 144–153 are involved in crystal contacts that can stabilize the β hairpin. We then used the NMR chemical shift perturbation and paramagnetic broadening data to dock the three binding motifs of Tim23—that is, 1MSWLFGD7, 68VEYLDLE74, and 90SRGWDD96—to the Tim21IMS solution structure. Because of the low affinity of each individual motif, no large structural rearrangements are expected to occur in Tim21IMS upon binding of Tim23IMS. For docking, the Tim23 peptide was positioned in an extended conformation 10–12 Å above the binding pocket as defined by the NMR data. Peptide docking was performed, in which the structure of Tim21IMS was kept fixed but the structure of the Tim23-motif was allowed to change. Figures 5A and S2 show different docked conformations of the three Tim23 motifs in complex with Tim21IMS. Due to the dynamic nature of the Tim23IMS-Tim21IMS complex, it was not possible to obtain experimental information about the structure of the three Tim23IMS binding motifs when bound to Tim21IMS. Thus, we cannot exclude that the three Tim23IMS motifs can also populate alternative conformations. Despite this uncertainty, however, the docking models shown in Figures 5A and S2 suggest that K139 and Y141 of Tim21 might be important for the interaction with Tim23IMS.

Notably, peptide docking did not result in a single bound conformation, but a set of conformations with similar docking energies. Moreover, even for a single Tim23 binding motif, different hydrophobic residues formed contacts with Y141 of Tim21IMS in the docked structures (Figures 5A and S2). Part of this structural heterogeneity might be due to limitations of the docking algorithm. On the other hand, experimental support for structural heterogeneity in the Tim23IMS-Tim21IMS complex comes from PRE-broadening induced in Tim21IMS upon addition of Tim23IMS, which was tagged with MTSL at either residue 11 or 67 (Figures 2C and 2D). The MTSL attachment site (residue 11) is in one case C terminal to the binding motif (the 1MSWLFGD7 motif), whereas in the other case (residue 67), it is N terminal to the 68VEYLDLE74 binding motif. The PRE profiles
induced in Tim21IMS were, however, similar (Figures 2C and 2D), a finding not expected when each motif would bind in a single orientation (as in this case the MTSL tag would likely be located at different sites with respect to Tim21IMS). Conformational heterogeneity might be important for the ability of Tim21IMS to recognize the three different Tim23 binding motifs (Figure 5B). In addition, it might allow for lower affinity and therefore efficient dissociation despite the specificity of the Tim23-Tim21 interaction.

Interaction of Tim23 with Tim50

Within the TIM23 complex, the association of the IMS domains of Tim23 and Tim50 plays an important role in receiving the presequence carrying preprotein from the outer mitochondrial translocon and directing it to the inner mitochondrial pore (Meinecke et al., 2006; Shiota et al., 2011). In vitro binding studies in combination with in vivo chemical crosslinking revealed that Y70 and L71 of Tim23IMS are important for binding to Tim50IMS (Gevorkyan-Arapetov et al., 2009; Mokranjac et al., 2003; Tamura et al., 2009; Yamamoto et al., 2002). Y70 and L71 belong to the Tim23 residue stretch 68VEYLDLE74 that binds to Tim21IMS (Figure 5). To obtain insight into the Tim23-Tim50 interaction on a residue level, we used two different Tim50IMS variants. Tim50(164–476) comprises most of the IMS domain of Tim50, whereas for Tim50(164–361), the 3D structure is known (Qian et al., 2006; Shiota et al., 2011; Tamura et al., 2009). Our NMR-based binding analysis of the isolated domains supports a translocation contact between Tim23 and Tom22. Tim23 residues V53 and L58–L61 were perturbed by addition of Tom22IMS (Figure 7A). Moreover, changes in carbon resonances of the aliphatic side chains of Tom22IMS were observed upon addition of Tim23IMS (Figure 7B). Thus, both in vivo crosslinking—taking into account the length of the crosslinker—and in vitro binding map the Tim23-Tom22 translocation contact to the central part of Tim23IMS. In contrast to the direct Tim23IMS-Tom22IMS interaction, NMR signals of Tim23IMS remained unperturbed in a titration with the N-terminal tail of Tom40 (Figure 7C), which is predicted to be disordered and located in the IMS. In addition, we did not detect an interaction between Tim21IMS and Tom22IMS (Figure S3), in line with the finding that Tim21 appears not to play a primary role in linking the TOM40 and TIM23 complexes (Tamura et al., 2009).

DISCUSSION

To facilitate preprotein import, the subunits of the TIM23 complex adopt multiple conformations and undergo association-dissociation processes (Popov-Celek et al., 2008; van der Laan et al., 2007). The Tim23 protein is the main subunit of the presequence translocon. It forms the protein-conducting pore in the inner mitochondrial membrane (Truscott et al., 2001) and has been suggested to interact with more than 15 subunits across the translocases (Albrecht et al., 2006; Chacinska et al., 2003; Mokranjac et al., 2005; Shiota et al., 2011; Tamura et al., 2009). Interactions among the intermembrane space domains of TIM23 are important in receiving and directing the preprotein toward the TIM23 channel. Using purified IMS domains of Tim23 and Tim21 in combination with NMR spectroscopy, we revealed a complex mechanism of interaction between the intermembrane space domains of Tim23 and Tim21. Tim23 contains three distinct motifs that bind to a single binding pocket in Tim21 (Figures 1, 2, 3, 4, and 5). The binding pocket is formed by β strand 1 and α helix 1, a region that is evolutionary conserved in Tim21 (Figures 2B and 2E). The Tim23 binding motifs bind individually very weakly to Tim21 and Tim23 residues V53 and L58–L61 were perturbed by addition of Tom22IMS (Figure 7A). Moreover, changes in carbon resonances of the aliphatic side chains of Tom22IMS were observed upon addition of Tim23IMS (Figure 7B). Thus, both in vivo crosslinking—taking into account the length of the crosslinker—and in vitro binding map the Tim23-Tom22 translocation contact to the central part of Tim23IMS. In contrast to the direct Tim23IMS-Tom22IMS interaction, NMR signals of Tim23IMS remained unperturbed in a titration with the N-terminal tail of Tom40 (Figure 7C), which is predicted to be disordered and located in the IMS. In addition, we did not detect an interaction between Tim21IMS and Tom22IMS (Figure S3), in line with the finding that Tim21 appears not to play a primary role in linking the TOM40 and TIM23 complexes (Tamura et al., 2009).
Binding of several short linear motifs to a single binding site was previously observed to regulate the interaction of the disordered cyclin-dependent kinase inhibitor Sic1 with its receptor Cdc4 (Mittag et al., 2008). Electrostatic interactions between multiple phosphorylated sites on Sic1 and Cdc4 resulted in a dynamic equilibrium. In case of Tim23IMS-Tim21IMS a similar dynamic complex is found (Figure 5). However, in contrast to the Sic1-Cdc4 system, hydrophobic interactions are more important for the dynamic recognition of Tim21IMS. In addition, our structural analysis points to the existence of conformational heterogeneity of even a single Tim23IMS motif when bound to Tim21IMS (Figures 5 and 52). This feature is reminiscent of the dynamic binding mode of a presequence in the binding site of the cytoplasmic domain of Tom20 (Ko-muro et al., 2013; Saitoh et al., 2011) and highlights the importance of dynamic interactions for protein import into mitochondria.

What is the role of the linear binding motifs of Tim23 for other IMS interactions? Residue-specific analysis of the Tim23IMS-Tim50IMS interaction showed that all three Tim21-binding motifs of Tim23 are also involved in binding to Tim50IMS (Figure 6). In addition, the full IMS domain of Tim50 further recruits residues 29–46 of Tim23 into the complex (Figure 6B). The data show that Tim23’s interaction motifs are involved in several IMS interactions. The motifs are highly conserved (Figure 8A) and can bind to multiple partners (Figure 8B). Multiple binding sites are used to enhance affinity for one protein such as Tim21 or Tim50. In addition, the presence of several distinct interaction motifs might enable simultaneous binding of the intermembrane space domain of Tim23 to multiple protein components of the TIM23 complex. Such an interaction with multiple protein partners might stabilize the TIM23 complex and potentially enable the formation of heterooligomeric complexes in the translocation contact site. The presequence binding site in Tim23 (de la Cruz et al., 2010) overlaps with one of the motifs that is important for binding to both Tim21 and Tim50 (Figures 1 and 6). Because the affinity of each of the three individual motifs in Tim23 for binding to Tim21 is weak, presequence can efficiently compete with the 68–74 motif of Tim23 for binding to Tim21IMS/Tim50IMS, whereas the other two motifs are still bound to either Tim21IMS or Tim50IMS. In this way, the TIM23 complex might be regulated in a signal-sensitive manner.

Tim23 is anchored with its C-terminal tail in the inner mitochondrial membrane and can contact the outer mitochondrial membrane through its IMS domain (Donzeau et al., 2009). Removal of the 50 residues at the N terminus of Tim23, however, only modulates preprotein import (Chacinska et al., 2003). Thus, alternative ways to coordinate the translocases of the outer and inner mitochondrial membrane must exist (Chacinska et al., 2003; de la Cruz et al., 2010; Popov-Celeketic et al., 2008; Tamura et al., 2009). Using NMR spectroscopy we demonstrated that residues 53–61 of Tim23 directly bind in vitro to Tom22IMS, whereas no interaction with the C-terminal tail of Tom40 was detected (Figure 7). In line with a direct interaction between the central region of Tim23 and the IMS domain of Tom22, Tom22 has been crosslinked in vivo to residue 41 of Tim23 (Tamura et al., 2009). The region of Tim23IMS that binds to Tom22IMS is not involved in binding to presequence (de la Cruz et al., 2010) and does not participate in the complex with Tim21IMS (Figure 8). Formation of the TIM23-Tom22 translocation contact is therefore possible even when Tim21 is associated with the TIM23 complex.

In summary, we provided residue-level insight into the interaction of the intermembrane space domains of Tim23, Tim21, and Tim50, key components of the TIM23 complex, and determined the dynamic structure of the Tim23IMS-Tim21IMS complex. In addition, we identified the translocation contact site between Tim23 and Tom22, a major component of the TOM40 translocase in the outer mitochondrial membrane. We showed that Tim23IMS contains multiple sites to efficiently interact with the intermembrane space domain of Tim21 and to bind to multiple partners. Our data support a central role of the intermembrane...
N-terminal residues 361–387 of Tom40 were predicted to be disordered using reverse-phase high-performance liquid chromatography (HPLC). The sample needed, such as M9 medium supplemented by 4 g 13C glucose, 1 g lovas et al., 2009). The growth medium was selected based on the type of was used to further purify Tim21IMS and Tim50 IMS. Tom22 IMS was purified and TEV. Gel filtration on a Superdex 75 HiLoad column (GE Healthcare) cleaved proteins were reloaded onto Ni-NTA beads to remove the Z2 domain identified using IMAC (Ni-NTA) followed by TEV cleavage at room temperature. The interaction motifs of Tim23IMS (colored blue, red, and purple) bind to a single binding pocket in Tim21IMS (filled gray surface). Three representations are shown, highlighting that three interaction motifs of Tim23IMS rapidly exchange with the Tim21IMS binding pocket. By connection of three interaction motifs in one chain, the overall affinity toward Tim21 is increased. At the same time, the presence of multiple interaction motifs enables simultaneous binding to multiple partners and therefore dynamic regulation of complex formation.

EXPERIMENTAL PROCEDURES

Protein Preparation

Constructs corresponding to the IMS domains of Tim23(1–96), Tim50(164–381), Tim50(164–476), Tim21(103–225), and Tom22(120–153) were amplified from c-DNA templates obtained from the Harvard Plasmid Repository and were confirmed by DNA sequencing. Tim23(1–96) was expressed and purified as described earlier (de la Cruz et al., 2010), whereas all other constructs were fused with an N-terminal Z2 domain using a modified pET28a vector (Bogomolovas et al., 2009). The growth medium was selected based on the type of sample needed, such as M9 medium supplemented by 4 g 13C glucose, 1 g 15N NH4Cl for 13C 15N samples, and 1 g 15N NH4Cl for 15N-labeled samples. For all constructs, protein expression in Escherichia coli BL21 (DE3) cells was induced with 1 mM isopropyl β-D-1-thiogalactopyranoside at an optical density 600 of 0.6. Tom22IMS was expressed at 37°C for 5 hr, Tim21IMS at 25°C for 10 hr, and Tim50IMS at 16°C for 16 hr. The fusion proteins were purified using IMAC (Ni-NTA) followed by TEV cleavage at room temperature. The cleaved proteins were reloaded onto Ni-NTA beads to remove the Z2 domain and TEV. Gel filtration on a Superdex 75 HiLoad column (GE Healthcare) was used to further purify Tim21IMS and Tim50IMS. Tom22IMS was purified by reverse-phase high-performance liquid chromatography (HPLC). The N-terminal residues 361–387 of Tom40 were predicted to be disordered using the I-TASSER server (Zhang, 2008). The mutants Tim23IMS(T11C), Tim23IMS(G67C), and Tim21IMS (S114C, C128A) were generated using the Quick Change Mutagenesis kit from Stratagene and were verified by DNA sequencing. All protein samples were dialyzed against NMR buffer (20 mM HEPES, 50 mM NaCl, pH = 7.2) prior to NMR studies. Tom40(361–387), Tim23(1–13), and Tim23(61–96) were prepared by solid-phase synthesis.

NMR Spectroscopy

NMR spectra were recorded on 600 and 700 MHz Bruker spectrometers equipped with cryogenic probes (Bruker Biospin). NMR spectra of Tim23IMS and Tim21IMS were measured at 288 K and 298 K, respectively. NMR data were processed using NMR Pipe (Delaglio et al., 1995) and analyzed using SPARKY (T.D. Goddard and D.G. Kneller, University of California, San Francisco).

Sequence-specific resonance assignment of Tim21IMS was accomplished using conventional 3D NMR experiments (NNCA, HNCA, CBCACONH, HNCO, HCCH-TOCSY). 13C-edited NOEY-heteronuclear single-quantum correlation (HSQC), 15N edited-NOEY-HSQC, Sattler et al., 1999). The structure of Tim21IMS was calculated using the distance restraints derived from 13C-edited NOEY-HSQC (aliphatic and aromatic) and 15N edited-NOEY-HSQC spectra. The 20 lowest-energy structures were further refined in explicit solvent using X-PLOR NIH (Schwieters et al., 2003).

For paramagnetic relaxation enhancement studies, a 5-fold molar excess of MTSL—(S-(2, 2, 5, 5-tetramethyl-2, 5-dihydro-1H-pyrrol-3-yl) methyl methanesulphonothioate—; purchased from Toronto Research Chemicals—was added to the protein and allowed to react for 2 hr at 4°C. Excess MTSL was removed using a PD-10 desalting column (GE Healthcare). After loading with MTSL, protein samples were dialyzed against NMR buffer (20 mM HEPES, 50 mM NaCl, pH = 7.2). The covalent attachment of MTSL to the protein of interest was confirmed with electrospray mass spectrometry.
The normalized average chemical shift perturbation (CSP), \(\Delta_{\text{HN}} \), was calculated as
\[
\Delta_{\text{HN}} = \frac{(d_N/5)^2 + (d_H)^2}{2}^{1/2}.
\]

To determine the binding affinity, \(K_d \), changes in CSP as a function of concentration of the ligand were fitted to a single-site binding model according to
\[
\Delta_{\text{HN}} = \frac{D_{\text{d,max}}}{C_1} + \frac{K_d}{C_0} + \frac{P}{C_0^{1/2}} + \frac{L}{C_0^{3/2}}
\]
where \(D_{\text{d,max}} \) is the maximal chemical shift perturbation value at saturation, and \([P] \) and \([L] \) are the total concentration of protein and ligand.

Intermolecular paramagnetic relaxation enhancement was determined based on \(^1H\)-\(^15N\)-HSQC spectra using samples that contained a 1:1 ratio of labeled protein and unlabeled binding partner. The diamagnetic state was measured with identical acquisition parameters after addition of ascorbic acid (10 molar equivalents to protein) to the same sample. The intensity error in each spectrum was obtained from the signal-to-noise ratio.

NMR-Based Docking of the Tim23IMS-Tim21IMS Complex

Peptides corresponding to the Tim21-interaction motifs of Tim23 (‘MSWLFGD’, ‘VEYLDLE’

Figure 6. Recognition of Tim50 by Tim23

(A and B) Normalized NMR signal intensity changes (I/Io) as a function of the primary sequence of Tim23 IMS at a 2-fold excess of Tim50(164–361) (A) and at an equimolar concentration of Tim50(164–476) (B).

(C) Residue-specific binding curves for Tim23 IMS upon binding to Tim50(164–476). I_{\text{bound}} is the fraction of Tim23 IMS bound to Tim50(164–476) as obtained from NMR signal intensity changes in 2D \(^1H\)-\(^15N\) HSQC spectra of Tim23 IMS (I_{\text{free}}) upon addition of Tim50(164–476) (I_{\text{ref}}). The solid curve shows the fit to a single site binding model.

Accession Numbers

The Protein Data Bank accession number for the structure coordinates of Tim21 IMS is 2MF7, and the BioMagRes Bank accession number for its chemical shifts is 19538.
AUTHOR CONTRIBUTIONS
R.B. prepared proteins and performed NMR experiments and analyzed data; I.J. and M.J. determined the Tim21IMS structure; S.B. supervised the protein preparation; R.B. and M.Z. wrote the manuscript; and S.B. and M.Z. supervised the project.

ACKNOWLEDGMENTS
We thank Kerstin Overkamp for peptide synthesis and Peter Rehling for help in the initial phase of the project. This work was supported by the Foundation for Polish Science (Fundacja na rzecz Nauki Polskiej, FNP) START, the Ventures Programme (to M.J. and I.J.), and cofinanced by the EU European Regional Development Fund and the DFG Collaborative Research Center 860, project B2 (to M.Z.).

REFERENCES

Figure 7. The Tim23-Tom22 Translocation Contact
(A) Tom22IMS binds to a distinct site in the central region of Tim23IMS as evidenced by 1H-15N NMR chemical shift perturbation of Tim23IMS in the presence of a 16-fold excess of Tom22IMS. The gray dashed line indicates the estimated error in the chemical shift perturbation analysis.

(B) Superposition of selected regions from 2D 13C-1H HSQC spectra of Tom22IMS in the presence (green) and absence (red) of Tom23IMS.
(C) Influence of addition of Tom40(361-387) on 1H-15N HSQC spectra of Tim23IMS. Chemical shifts remained below the estimated uncertainty (gray dashed line) indicating that Tom40(361-387) does not bind to Tim23IMS in vitro.
Dynamic Protein Interactions in TIM23

Figure 8. Protein Interaction Network of Tim23IMS

(A) Sequence alignment for Tim23IMS highlighting the conservation of residues among different Fungi kingdoms with 1-5 as S. cerevisiae, ZygoSaccharomyces rouxii, Candida albicans, Schizosaccharomyces pombe, and Aspergillus fumigatus, respectively. Hydrophobic and aromatic residues are highlighted in blue; positive and negative charged residues are shown in red and magenta, respectively; neutral residues in green; and glycine and proline in orange and yellow, respectively.

(B) Summary of interaction motifs in Tim23IMS used for binding to Tim21IMS, Tom22IMS, presequence (de la Cruz et al., 2010), and Tim50IMS. Each interaction motif is used for binding to multiple protein partners.

Supplemental Information

Molecular Basis of the Dynamic Structure of the TIM23 Complex in the Mitochondrial Intermembrane Space

Rakhi Bajaj, Łukasz Jaremko, Mariusz Jaremko, Stefan Becker, and Markus Zweckstetter
Figure S1, related to Figure 3. Residue-specific binding curves for Tim21IMS residues obtained upon titration with Tim23 (61-96). The normalized average chemical shift perturbation (CSP), Δ_{HN}, was calculated as $\Delta_{HN} = \sqrt{\left(\frac{\delta_N}{5}\right)^2 + \left(\delta_H\right)^2} / 2$.
Figure S2, related to Figure 5. Additional conformers of the Tim23IMS-Tim21IMS complex obtained by NMR-driven flexible peptide docking. (A), (B) and (C) show the lowest energy conformers of the top 2-4 clusters (the top 1 cluster is shown in Figure 4) for each of the 7-residue motifs of Tim23 in complex with Tim21IMS (white surface). On top of each panel, the primary sequence of the Tim23 motif is shown. Tim23 residues in complex with Tim21IMS are represented as sticks and color coded. The side chains of the key residues of Tim21, K139 and Y141, are shown in red and purple, respectively. Other Tim21 residues that showed chemical shift perturbation are marked blue.
Figure S3, related to Figure 7. Chemical shift perturbation (CSP) in a 2D 15N-1H HSQC spectrum of Tim21IMS upon addition of a 16-fold excess of Tom22IMS. All changes were below the error estimate.