English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Talk

Atomistic study of dislocation mobility and obstacle hardening in bcc-Fe: versatility of embedded atom method potentials

MPS-Authors
/persons/resource/persons125164

Haghighat,  Seyed Masood Hafez
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125457

von Pezold,  Johann
Microstructure, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125232

Körmann,  Fritz
Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125144

Friák,  Martin
Ab Initio Thermodynamics, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125350

Roters,  Franz
Theory and Simulation, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125330

Raabe,  Dierk
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Haghighat, S. M. H., Schäublin, R., von Pezold, J., Race, C. P., Körmann, F., Friák, M., et al. (2014). Atomistic study of dislocation mobility and obstacle hardening in bcc-Fe: versatility of embedded atom method potentials. Talk presented at MMM2014, 7th International Conference on Multiscale Materials Modeling. Berkeley, CA, USA. 2014-10-06 - 2014-10-10.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-30B5-C
Abstract
There is no abstract available