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ABSTRACT

Three state-of-the-art satellite climatologies are analyzed for their ability to observe light rain from pre-

dominantly shallow, warm clouds over the subtropical North Atlantic Ocean trade winds (1998–2005). HOAPS

composite (HOAPS-C), version 3.2; TMPA, version 7; and GPCP 1 Degree Daily (1DD), version 1.2, are

comparedwith ground-based S-Pol radar data from theRain inCumulus over theOcean (RICO;winter 2004/05)

campaign andMicroRainRadar data from theBarbadosCloudObservatory (2010–12).Winter rainfall amounts

to one-third of annual rainfall, whereby light rain from warm clouds dominates. Daily rain occurrence and rain

intensity during RICO largely differ among the satellite climatologies. TMPA best captures the frequent light

rain events, only missing 7% of days on which the S-Pol radar detects rain, whereas HOAPS-C misses 33% and

GPCP 1DDmisses 56%. Algorithm constraints mainly cause these differences. In HOAPS-C also few available

passive microwave (PMW) sensor overpasses limit its performance. TMPA outperforms HOAPS-C when only

comparing nonmissing time steps, yet HOAPS-C can detect rain for S-Pol rain-covered areas down to 2%. In

GPCP 1DD’s algorithm, the underestimated rain occurrence derived from PMW scanners is linked to the

overestimated rain intensity, being constrained by the GPCP monthly satellite–gauge combination, whereby IR

sensors determine the timing. Algorithm improvements in version 1.2 increased the rain occurrence by 50%

relative to version 1.1. In version 7 of TMPA, algorithm corrections in PMW sounder data largely improved the

rain detection relative to version 6. TMPA best represents light rain in the North Atlantic trades, followed by

HOAPS-C and GPCP 1DD.

1. Introduction

Global monitoring of precipitation with high spatio-

temporal coverage is only achievable using satellite-based

remote sensing. Polar-orbiting passivemicrowave (PMW)

satellite sensors are the basis of all existing satellite-based

precipitation climatologies (Kidd and Huffman 2011).

PMW sensors are constrained by large footprints of the

order of 10–50km and infrequent sampling of typically

two to four times daily. As a consequence, small-scale

showers and precipitation of low intensity are particularly

challenging to measure. This work aims at evaluating

the representation of precipitation from small-scale

showers in three state-of-the-art satellite climatologies

by comparing with ground-based remote sensing over

the North Atlantic Ocean trade winds.

We select three satellite climatologies that use Special

Sensor Microwave Imager (SSM/I) as a main data source.

However, the three climatologies differ in their retrieval

algorithms, and they use different additional data sources.

Global Precipitation Climatology Project (GPCP) is

a widely used global precipitation dataset, available at

monthly (Adler et al. 2003), pentad, and daily (Huffman

et al. 2001) resolution. The GPCP 1Degree Daily (1DD),

version 1.2 (v1.2), starts at October 1996 and is consistent

with the monthly GPCP Satellite–Gauge (SG) product.

The nonglobal Tropical Rainfall Measuring Mission

(TRMM) Multisatellite Precipitation Analysis (TMPA;

Huffman et al. 2007), version 7 (v7), has been available

since 1998, incorporating data from the first spaceborne
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precipitation radar (PR). Both GPCP and TMPA are

largely based on the Goddard profiling algorithm

(GPROF; Kummerow et al. 2001, 2011), a physical re-

trieval that relates vertical hydrometeor profiles, bright-

ness temperatures, and precipitation rates. In contrast,

HamburgOceanAtmosphereParameters andFluxes from

Satellite Data (HOAPS; Andersson et al. 2010) uses ex-

clusively SSM/I data for its precipitation retrieval, avail-

able since 1987. Based on a neural net approach, HOAPS

performs fairly well in detecting light precipitation within

high-latitude North Atlantic cyclones when evaluated

against ship-based in situ disdrometer snowfall measure-

ments (Klepp et al. 2010) and weather observations of

rainfall from voluntary observing ships (Klepp et al. 2003).

Apart from monthly mean precipitation (Andersson et al.

2011), no detailed evaluation of the gridded 6-hourly

HOAPS composite (HOAPS-C) has been carried out in

the subtropics, which because of the prevalence of shallow

clouds and light rain is the focus region for this study.

In the subtropics, satellite sensors aremainly confronted

with low precipitation intensities (Short and Nakamura

2000). From a satellite’s perspective these low intensities

can be caused either by intense small-scale showers or by

light large-scale precipitation, such as drizzle.Both types of

precipitationmight lead to similarly low precipitation rates

within a PMW footprint. Most PMW footprints range

between 10 and 50km in resolution, which largely exceeds

the size of the average rain shower of a few tens of square

kilometers (Nuijens et al. 2009). Deep convection is easier

to capture for satellite sensors but rather scarce in the

subtropics. Therefore, precipitation monitoring is partic-

ularly challenging over the subtropical oceans. Instead of

‘‘precipitation,’’ henceforth we refer to ‘‘light rain’’ as

a term for a low areal precipitation rate as a satellite sensor

would see it. The term light rain is appropriate because

precipitation in the subtropical North Atlantic is, when

averaged over the scale of a satellite footprint, 1) of low

intensity (Short and Nakamura 2000) and 2) initialized by

warm rain processes (Lau and Wu 2003).

Light rain covers large areas in the subtropics and thus

presents a challenge for current and future satellite remote

sensing. The spaceborne TRMM PR and the TRMM

Microwave Imager (TMI) serve as the calibrator for

TMPA, called TRMM Combined Instrument (TCI).

However, the TRMMPR is only sensitive to precipitation

above about 0.5mmh21 (Kozu et al. 2001). The CloudSat

Cloud Profiling Radar (CPR) is particularly sensitive to

light precipitation with high spatial resolution, but the

CPR swath width is limited to 1.4km (Ellis et al. 2009;

Mitrescu et al. 2010). Even so, CPR observations indicate

that PMW sensors underestimate light rain occurrence

(Stephens et al. 2012, Behrangi et al. 2012, 2014). The re-

cently operational Global Precipitation Measurement

mission aims at higher sampling as well as a higher sensi-

tivity of PMW sensors to improve monitoring of light rain

and snowfall (Hou et al. 2014).

The evaluation of current satellite climatologies re-

quires surface-based reference data. Oceanic areas lack

high-quality in situ surface-based precipitation data be-

cause gauges along coastal areas are only representative

for a rather limited area, and are thus inappropriate to

compare to satellite climatologies over the broader ocean.

Coastal and island-based radars can obtain oceanic vali-

dation data on larger areas, although the underlying drop

size distributions (DSDs) can vary substantially (Wilson

et al. 2011). However, at the surface level DSDs do not

differ significantly over land and ocean (Bumke and

Seltmann 2012). In the western Atlantic close to the Ca-

ribbean, the Barbados Cloud Observatory (BCO) has

been measuring cloud-related meteorological quantities

since April 2010 (Nuijens et al. 2014). Among these data

a Micro Rain Radar (MRR) measures rainfall at very

high temporal resolution. Additionally, in winter 2004/05

the Rain in Cumulus over the Ocean campaign (RICO;

Rauber et al. 2007) onBarbuda Island amounted to about

two months of rainfall data from a horizontally scanning

S-band dual-polarization Doppler radar (S-Pol). Fre-

quent light rain events were well resolved by the S-Pol

during RICO, making its data valuable for this study to

compare with the satellite climatologies.

Satellite climatologies are important for climate model

evaluation. Relative to satellite sensors, models over-

estimate the occurrence of drizzle (Stephens et al. 2010).

Insufficient evaporation rates and excessive warm rain

formation process in models are possible reasons for this

difference (Suzuki et al. 2011;AhlgrimmandForbes 2014).

Some GCMs face problems linked to dynamics, in which

a precipitation high bias occurs in regions of subsiding air

masses, and vice versa (Hirota et al. 2011). However, these

findings depend on the choice of the observational refer-

ence dataset.We investigate howGPCP1DD,TMPA, and

HOAPS-C represent the seasonal variability and how they

perform over a subtropical oceanic area dominated by

light rain. The outcome of this study may aid climate

model evaluation and advance the understanding of light

rain more generally.

Themethodology (section 2) introduces the study area,

the datasets, and the concept of analysis. The discussion

(section 3) comprises three parts. Section 3a addresses

the overall state and seasonal differences of light rain and

its contribution to total rain over the subtropical North

Atlantic. In section 3b we compare the satellite datasets

with ground-based radar data on a smaller scale. This part

elaborates on potential differences in the light rain rep-

resentation among the three satellite datasets. Section 3c

extends the view to investigate whether the findings from
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RICO and BCO hold for larger areas and longer periods.

Section 4 condenses the main findings and provides

concluding remarks.

2. Data and methods

a. Ground-based remote sensing

The ground-based remote sensing instrumentation

used in this study comprises two different radar systems:

a horizontally scanning S-Pol and a vertically pointing

MRR.

TheS-Pol (Keeler et al. 2000), developedby theNational

Center forAtmosphericResearch, is sensitive tomeasuring

precipitation-sized particles with 10.68 cm wavelength.

It was deployed on the Caribbean Sea island of Barbuda

(17.618N, 61.828W) during the RICO field campaign,

operating from 24 November 2004 to 25 January 2005

(Rauber et al. 2007). In this study, surveillance scans are

analyzed, which were performed at a 0.58 elevation angle,
covering a 150-km domain in radius. Each scan is re-

gridded onto a polar grid with a range resolution of 150m

and has undergone extensive filtering to exclude anom-

alous returns from ground clutter. The minimum

threshold of 7dBZ in reflectivity is used to exclude Bragg

scattering (Knight and Miller 1998). A Z–R relationship

is applied to convert the measured radar reflectivity Z

(dBZ) into a rain rate R (mmday21). As it strongly de-

pends on the DSD, the selection of a particular Z–R re-

lation introduces an uncertainty (Houze et al. 2004).

Here, following Nuijens et al. (2009) theZ–R relation for

shallow convective clouds in the TRMM PR algorithm is

mainly used (Iguchi et al. 2000):

Z5 148R1:55 . (1)

For the sake of comparison, the Z–R relation derived

from DSDs that were measured during RICO aircraft

flights (Snodgrass et al. 2009),

Z5 88R1:52 , (2)

is also used in this study.

The vertically pointing MRR, developed by

Meteorologische Messtechnik GmbH (METEK), has

operated on the island of Barbados since April 2010. The

MRRmeasures in frequency modulated continuous wave

(FM-CW)mode at 24-GHz frequency (METEK 2009). Its

high sensitivity combined with high temporal resolution

(here 1-min averages) and a vertical resolution of 30 gates

(up to 3000-m height) with 100-m vertical resolution en-

ables detecting low-intensity small-scale rain showers.

Furthermore, with the help of a comparatively large ver-

tical scattering volume statistically reliable estimates of the

DSD can bemeasured directly by theMRR. In an analysis

of data froma scanning cloud radar Lonitz (2014) found no

island effect in measurements at the BCO, hence we as-

sume that themeasuredDSDover themeasurement site is

representative for those that would be found over the

surrounding ocean. FromDSDthe rain rate can be derived

with higher accuracy relative to the S-Pol by integrating

over the drop size D:

R5
p

6

ð‘
0
N(D)D3y(D) dD , (3)

where y(D) corresponds to the terminal falling velocity,

(p/6)N(D)D3 corresponds to the volume of the differ-

ential droplet number density, andD corresponds to the

drop diameter. To derive a surface-representative rain

rate only the third-lowermost layer (about 300m height)

of the MRR data is used (Clemens et al. 2006).

b. Satellite data

Three different publicly available satellite precipitation

products are used in this study, providing rain-rate esti-

mates at different spatial and temporal resolutions

(Table 1). TMPA provides precipitation rates at 3-hourly

resolution on a 0.258 grid (Huffman et al. 2007), whereas

HOAPS-C has 6-hourly sampling and 0.58 spatial reso-
lution (Andersson et al. 2010). By averaging we gener-

ate a coarse-grained 0.58 version of TMPA (named

TMPA*) with 6-hourly time step. This procedure con-

serves the precipitation information of TMPA by time–

space averaging and enables a comparison of TMPA

with HOAPS-C at equal gridbox size. From GPCP

(Huffman et al. 2001) we use the current version 1.2 at

1DD resolution, which is coarser than HOAPS-C and

TMPA. All three climatologies overlap during the pe-

riod from 1998 to 2005.

For the overlapping period, the mainstay ofHOAPS-C

and TMPA are SSM/I PMW radiometers on board the

polar-orbiting sun-synchronous satellites of the Defense

Meteorological Satellite Program.GPCP 1DDuses SSM/I

only for monthly scaling of precipitation frequency. SSM/I

is a conically scanning radiometer with a channel-

dependent (19, 22, 37, and 85GHz) sensor footprint of

up to 123 15km2.All channels are sampled at vertical and

horizontal polarization, except for the 22-GHz channel

TABLE 1. Overview of utilized satellite precipitation datasets.

HOAPS-C TMPA TMPA* GPCP 1DD

Version v3.2 v7 As TMPA v1.2

Grid size 0.58 0.258 0.58 18
Time step 6 h 3 h 6 h Daily

Total

period

1988–2008 1998–present 1998–2005 1996–present

558 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 54



(vertical). From 19 to 37GHz the emission signal of water

droplets dominates the precipitation retrievals, whereas

at 85GHz the scattering of ice crystals plays a major role

(Levizzani et al. 2007). Kidd andHuffman (2011) provide

an extensive overview on space-based instrumentation

and retrieval techniques regarding precipitation estima-

tion from passive and active microwave sensors. In the

following, HOAPS-C, TMPA, and GPCP 1DD are de-

scribed in more detail.

1) HOAPS

The current version 3.2 (v3.2) of HOAPS (Fennig et al.

2012) comprises essential water cycle parameters over the

global ice-free ocean over more than 20 consecutive years

from 1987 to 2008. An elaborate processing chain, in-

cluding all available SSM/I instruments, is designed to

provide a time series with dense data sampling and hence

detailed information of the underlying weather situations.

The precipitation retrieval uses a neural net approach and

relies exclusively onSSM/I data. Theneural netwas trained

on a global dataset of randomly selected SSM/I brightness

temperatures from the year 1998. Furthermore, a careful

intersensor calibration ensures a physically consistent re-

trieval among all SSM/I radiometers (Andersson et al.

2010). By avoiding the use of ancillary dataHOAPS can be

more effectively used as an independent reference for re-

analysis and model evaluation (Andersson et al. 2011).

In the HOAPS retrieval procedure the ungridded

HOAPS scan (HOAPS-S) orbital swath data cut off

precipitation rates below 0.3mmh21 because below that

threshold a rain signal is no longer distinguishable from

background noise (Andersson et al. 2010). However, af-

ter gridding the HOAPS-S data to 0.58 3 0.58HOAPS-C,

precipitation rates below 0.3mmh21 can occur. In

HOAPS-C each grid box is assigned the most recent re-

trieval value within the 6-h time period starting at the

nominal time of 0000, 0600, 1200, and 1800 UTC. If there

is no overpass within that time at a certain grid box,

a missing value is assigned. We exclusively use HOAPS

v3.2 in this study because of its prolonged time series,

enhanced temporal resolution, and improved processing

of level-1 SSM/I brightness temperatures relative to its

predecessor HOAPS v3 (Fennig et al. 2012).

2) TMPA

The nonglobal TMPAdataset v7 (Huffman and Bolvin

2014) was initially released in May 2012, whereas a re-

processed version was released in December 2012. In

contrast to HOAPS, TMPA merges data from several

satellite sensors and gauges. As the backbone, the phys-

ically based GPROF (Kummerow et al. 2011) is used to

retrieve rain rates related to the vertical structure of hy-

drometeors and the brightness temperature measured

by PMW sensors. In addition to TMI, these sensors are

SSM/I, its successor SSMIS, and AMSR-E. All named

PMW sensors are processed applying GPROF2010 (TMI,

SSM/I), GPROF2004 (AMSR-E), or GPROF2004v

(SSMIS; Vila et al. 2013). For each grid box all of the

available PMW data are converted into precipitation es-

timates and averaged over the 3-h time range as follows:

First, the TCI (or 2B31), containing PR and TMI, is av-

eraged onto a 0.258 3 0.258 grid. If TCI is unavailable, the
PMW scanners (SSM/I, SSMIS, and AMSR-E) are aver-

aged. If no PMW scanner is available, the PMW sounders

Advanced Microwave Sounding Unit (AMSU-B) and

Microwave Humidity Sounder (MHS) are employed.

Geosynchronous Earth orbit (GEO)-IR satellites are used

as secondary satellite information. These are calibrated

against the PMW data as IR satellites have the advantage

of high spatiotemporal resolution but a rather poor cor-

relation for precipitation inferred from cloud-top tem-

peratures (Kidd and Huffman 2011). Finally, TMPA is

scaled to monthly multisatellite–gauge combination to

conserve total precipitation.

3) GPCP

GPCP 1DD v1.2 (Huffman and Bolvin 2013) was re-

leased in September 2012 and, similar to TMPA, applies

a combination of PMW and IR satellite data. Fractional

occurrence of precipitation is retrieved from SSMIS and

SSM/I satellite sensors using GPROF2004v (Vila et al.

2013) and GPROF2004 (Olson et al. 1999; Kummerow

et al. 2001, 2011) and is used formonthly scaling on a 0.58 3
0.58 grid. The GEO-IR satellites Geostationary Opera-

tional Environmental Satellites, the Meteorological Sat-

ellite (Meteosat), and Geosynchronous Meteorological

Satellite [GMS, subsequently Multifunctional Transpor-

tation Satellite (MTSat)], are used as primary source of IR

data with 3-hourly time step at a 18 3 18 grid. The low-

Earth-orbiting (LEO)-IR NOAA satellites are accumu-

lated to the nearest 3-hourly time on the same grid size.

The coldest IR-retrieved brightness temperatures are then

assigned a constant rain rate per 3-h time step according to

the monthly fractional occurrence from SSM/I and SSMIS

and in line with the GPCP SG monthly product. The 2.58
monthly resolution is matched to the 18 GEO-IR and

LEO-IR GPI data (same as for TMPA). Additionally,

TIROS Operational Vertical Sounder (TOVS) and At-

mospheric Infrared Sounder (AIRS) are used outside of

458N–S and thus do not affect this study. The GPCP 1DD

dataset is documented in detail by Huffman et al. (2001).

c. Methods and study area

The study area ranges from the West African coast

(upstream part of average trade wind) toward the

Caribbean (downstream). This large area of the subtropical
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North Atlantic receives most of its precipitation as light

rain from shallow clouds. Here defined as rain rates less

than 24mmday21 in a 0.58 3 0.58 box, light rain contributes
40%–80% to total rainfall amount according toHOAPS-C

rain rates averaged over 18 years (Fig. 1). The maximum

light rain contribution, partly exceeding 80%, occurs

along the trade wind trajectory connecting upstream and

downstream regions. This trade wind trajectory (Fig. 1;

red line) marks the average flow of the trade wind as

deduced from Moderate Resolution Imaging Spectror-

adiometer (MODIS) satellite observations for May to

October (2002–07) using Hybrid Single-Particle La-

grangian Integrated Trajectory model (HYSPLIT) for-

ward and backward trajectories (Sandu et al. 2010). At

the beginning (upstream) and at the end of the trajectory

(downstream) we define an 88 3 88 box (Fig. 1; black

squares) to investigate rainfall conditions on a larger area

on either side of the subtropical North Atlantic. These

boxes and the trajectory that connects them are used to

explore the seasonal variability and transformation of

rainfall between the two cloud regimes, and to compare

the three satellite products with each other.

The satellite climatologies require a surface refer-

ence such as radar data. For that purpose, we apply the

aforementioned radar data (section 2a) from BCO and

RICO. The BCOmeasures cloud-related meteorological

quantities sinceApril 2010 (Nuijens et al. 2014). Whereas

the BCO is a long-term measurement, RICO was a tem-

porary observational campaign in the Caribbean (winter

2004/05; Rauber et al. 2007) that aimed at quantifying

rainfall from shallow marine cumulus clouds. Apart from

these two field campaigns, other stations collect in situ

atmospheric data of cloud-related quantities in the sub-

tropical North Atlantic such as CapeVerdeAtmospheric

Observatory on São Vicente and, since September 2013,
the Atmospheric Radiation Measurement Program site
on the Azores.

3. Results

In the following sections, an 8-yr (1998–2005) clima-

tology of precipitation over the subtropical North At-

lantic is explored for three state-of-the-art satellite

precipitation climatologies, HOAPS-C v3.2, GPCP

1DD v1.2, and TMPA v7 (Fig. 2a), focusing on a typical

trade wind trajectory and two 88 3 88 areas on either side
of the North Atlantic displayed in Fig. 1. A fair com-

parison of precipitation from the satellite climatologies

FIG. 1. Averaged light rain (,24mmday21) volume contribution to total rainfall amount of

HOAPS-C (1988–2005). Dotted/hatched areas refer to regions with sparse rain. The red-

dashed line marks the average trade wind trajectory after Sandu et al. (2010). Black squares

highlight 88 3 88 subareas upstream (east) and downstream (west), and red dots mark the

locations of RICO and BCO.
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requires an adjustment to equal spatiotemporal resolu-

tion, because a rain rate strongly depends on the time

and space over which it is derived. If not mentioned

explicitly, we always employ daily and area-averaged

(28 3 28) rain rates of HOAPS-C, TMPA, and GPCP

1DD. This spatiotemporal adjustment also applies to the

ground-based reference data.

a. Climatology of light rain over the subtropical
North Atlantic from satellite climatologies

The large-scale environment over the North Atlantic

trades experiences a pronounced seasonality related to

the strength of the North Atlantic subtropical high and

the migration of the ITCZ (Brueck et al. 2015). During

boreal winter, when large-scale vertical motion is sub-

siding, strong northeasterly winds prevail and high lower-

tropospheric stability limits convection to below the trade

wind inversion. These winter months (December–May)

experience half as much precipitation compared to the

summermonths (June–November), when subsidence and

lower-tropospheric stability are reduced and deep con-

vection from within the ITCZ and occasionally a hurri-

cane put their mark on most of the western part of the

subtropics. Henceforth, we refer to ‘‘dry season’’ (winter)

and ‘‘wet season’’ (summer) to distinguish between the

seasonal precipitation regimes. The seasonality is evident

when comparing the 8-yr (1998–2005) area-averaged rain

rates along the trade wind trajectory for the dry season

(brown bars in Fig. 2) with the wet season (cyan). The

vertical bars span the range of the 28 3 28 area-averaged
rain rates among HOAPS-C, GPCP 1DD, and TMPA;

that is, the top of the bar belongs to the dataset with the

highest value and the bottom of the bar to that with the

lowest value. Except for the eastern part of the trajectory,

where precipitation is scarce and satellite differences are

as large as seasonal differences, there is a clear seasonal

cycle present in average rainfall. In both seasons rain

rates increase downstream along the trajectory, but in the

wet season rain rates peak around 508W compared to

608W near the Brazilian coast in the dry season (Siongco

et al. 2015).

Because high rain-rate events can have a substantial

influence on the average rain rate, the contribution of light

rain to total rainfall amount along the trajectory is plotted

in Fig. 2b. Here the light rain volume fraction is defined as

the contribution of rain rates less than 6mmday21 to total

rainfall amount, where 6mmday21 is subjectively chosen.

Note that this light rain threshold is markedly lower than

the threshold used for HOAPS-C in Fig. 1 (0.58 3 0.58)
because the rain rates in Fig. 2b refer to a 16-times-larger

area of 28 3 28. The rather conservative threshold mainly

excludes heavy rain but also some intense small-scale

showers from trade cumuli considered as light rain. For

this study, the absolute value of the threshold plays aminor

role (refer to Fig. 3a). Instead of presenting a concrete light

rain fraction, we focus on changes of the light rain volume

fraction with respect to season and location on the trade

trajectory. The light rain volume fraction ranges between

about 20% and 50% and has overall less seasonality or

dependence on longitude than the area-averaged rain rate

(Fig. 2b). Although, there is some indication that the light

rain fractions are larger upstream close to the African

coast and in the dry season. The minimum near 508W
likely reflects the passage of deep tropical disturbances

with high rain rates.

Although the satellite products seem to agree better

in their 8-yr area-averaged rain rates during the dry

season (difference , 0.5mmday21) compared to the

wet season (2mmday21), the relative differences reveal

very similar values. The relative difference is defined as

the ratio between the maximum value of a satellite cli-

matology and the difference between the minimum and

maximum value at a given longitude. When the relative

difference is high, the range of the satellite climatologies

is large related to their absolute value. Accordingly, the

large spread of up to 2mmday21 area-averaged rain

FIG. 2. The vertical bars span the range ofHOAPS-C, TMPA, and

GPCP 1DD (a) area-averaged (28 3 28) rain rates (mmday21) and

(b) light rain (,6mmday21) volume fraction along the average

trade wind trajectory (Fig. 1) for dry (December–May; brown) and

wet season (June–November; cyan), averaged over 8 yr (1998–2005).
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rate in the western part during the wet season appears to

be smaller (25%–35%) than that for the eastern part

(45%–65%) when referring to relative differences. A

reason for that east–west contrast is the scarcity of

rainfall in the eastern part of the subtropical North

Atlantic (hatched area in Fig. 1). Nevertheless, the

western part is a region of higher relative differences

among the satellite climatologies than the transition re-

gion around 408W (15%–25%). The relative differences

for the light rain volume fraction range between 10% and

40% (dry season) and 15%and 45% (wet season). At this

point, quantitative differences among the satellite prod-

ucts stand out. The individual performance of each

satellite climatology is examined in section 3b whereby

explanations for differences among the satellite clima-

tologies are discussed.

The total annual rainfall amount combines rain oc-

currence and rain intensity by accumulating rainfall per

year. We calculate the average annual rainfall amount

for 8 yr (1998–2005) over two 88 3 88 boxes with 28 3 28
spatial resolution on either side of the trajectory (black

boxes in Fig. 1). On average, TMPA has the highest

average annual rainfall amount during 8yr with 880mm,

HOAPS-C (673mm) and GPCP 1DD (646mm) show

about 25% less rainfall. The origin of these differences

can be understood inmore detail by an analysis of the rain

intensity distribution (Fig. 3). In the downstream box,

HOAPS-C, TMPA, and GPCP 1DD show similar con-

tributions of accumulated rain rates below about

0.2mmday21 that contribute by less than 1% to the total

rain amount (Fig. 3a). However, individual rain rates be-

low 1mmday21 in HOAPS-C and TMPA have a stronger

contribution than the same rain rates in GPCP 1DD.

For instance, rain rates less than 6mmday21 in GPCP

1DD contribute by more than 30% to the total rainfall

amount, whereas for TMPA and HOAPS-C this light

rain accounts for 50% and 65% of the total rainfall,

respectively. Thus, in GPCP 1DD higher rain rates

contribute relatively more to the average annual rainfall

amount than in HOAPS-C and TMPA.

The upstream box (Fig. 3b) indicates a shift of the whole

rain-rate distribution toward lower rain rates compared to

the downstream box. The average annual rainfall of

TMPA (172mm) and GPCP 1DD (165mm) reflects that

reduction, whereby GPCP 1DD agrees much better with

TMPA than in the downstream box. The total annual

rainfall of HOAPS-C (103mm) is about one-third lower.

One potential reason can be that HOAPS-C observes

fewer very high rain rates than TMPA and GPCP 1DD.

While the whole rain distribution shifts toward lower rain

rates, both HOAPS-C and TMPA show a more marked

increase in the contribution of rain rates less than

0.5mmday21 compared to the downstream box, cor-

responding to about 15% (Fig. 3b) and 4% (Fig. 3a) of

total rainfall, respectively. In the rain-rate distribution

HOAPS-C and TMPA agree relatively well, whereas

GPCP 1DD differs more. GPCP 1DD confirms the

higher contribution of high rain rates to total rainfall,

which is even more pronounced in the previous v1.1.

Because the performance of the satellite climatologies

differs between the eastern and the western part of the

subtropical North Atlantic, the locally varying rain

characteristics can reveal specific weaknesses of the

satellite climatologies in their overall ability to detect

rain. Depending on seasonality and frequency of rain,

weaknesses related to sampling, sensor sensitivity, or

algorithm features may be emphasized differently.

Causes of different rain-rate distributions and total

rainfall amounts, and the robustness of these results on

shorter time periods, are investigated in the following

section using ground-based radar data. The study

FIG. 3. Cumulative rainfall contribution in percent of daily area-

averaged (28 3 28) rain rates for the 8-yr period (1998–2005) of

HOAPS-C (red), GPCP 1DD (yellow), and TMPA (blue) for (a)

downstream (west) and (b) upstream (east) 88 3 88 boxes (Fig. 1).
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focuses on the western Atlantic (downstream), where

generally a broader rain-rate distribution is sampled,

and where recent field measurements have provided

good reference datasets.

b. Comparison with ground-based radar in the
downstream region

What are typical rain intensities found in the western

region of the subtropical North Atlantic where shallow

cumulus clouds prevail? And which satellite product

best captures such rain events? Two precipitation

datasets from ground-based radars deployed on Bar-

buda and Barbados are used 1) to describe the character

of rain in the trades and 2) as a reference for a more in-

depth evaluation of the performance of the three satel-

lite products.

1) INTENSITY OF RAIN FROM SHALLOW CUMULUS

The first dataset contains two years of MRR data

collected at a single location at the BCO, which provides

rain rates detected within 300m above the surface at

1-min resolution (section 2a). For an averagewind speed

of 7m s21 this is equivalent to a spatial resolution of

420m. The second dataset contains two months of rain

rates from the S-Pol radar deployed on Barbuda during

RICO, which provides rain rates within an area of 150km

in radius on a grid mesh of 150m in range and 0.678 in
azimuth, about every 20min.

The normalized frequency distributions of these in-

stantaneous rain rates (i.e., no further averaging over time

or space is performed) from the MRR and S-Pol highlight

the prevalence of rain with low intensities (Fig. 4). Rain

rates less than 8mmday21 have a frequency of occurrence

of 10% or more. On the other hand, intensities of

25mmday21, which are typically significant rain showers,

are not scarce and reinforce the earlier statement that rain

from shallow clouds is not necessarily light rain.

The TRMM Z–R relation [Eq. (1)], developed for

shallow convection, agrees better with the MRR at

lower rain rates, whereas the RICO Z–R relation [Eq.

(2)] agrees better with the MRR at higher rain rates.

This uncertainty, related to the conversion of the mea-

sured radar reflectivity into a rain rate, can lead to dif-

ferences in estimated rain rates of 30%–50% (Nuijens

et al. 2009). The MRR overall has a higher frequency of

detecting very high rain rates (.50mmday21), which

may be because the MRRmeasures during both the dry

and the wet season, whereas the S-Pol onlymeasured for

about two months in total during the dry season. Al-

though the S-Pol also measured some rain from deeper

mixed-phase clouds during RICO [section 3b(2)], shallow

clouds and light rain dominate during these months

(Fig. 2). Because of its decreasing pixel resolution with

increasing distance away from the S-Pol radar, the S-Pol

rain signal reduces by about 2dBZ (100 km)21 (Fig. 3.2

in Nuijens 2005). This, and the fact that the center of the

radar beam at large distances is located at increasing

heights, within and near the tops of clouds, may be

a reason for an underestimation of rain rates by S-Pol

compared to the MRR.

Although the downstream western Atlantic region re-

ceives about twice as much rain during the wet season

compared to the dry season, the rain occurrence remains

almost constant at about 5.5%, according to the MRR at

BCO. This prevalence of frequently occurring low rain

intensities in the downstream region during the dry sea-

son provides a well-suited framework to evaluate satellite

data. For this evaluation only the two months of S-Pol

data are used, because this period overlaps with the

available period of HOAPS-C, TMPA, and GPCP 1DD.

Additionally, the S-Pol data provide a spatial image of

rain rates to which the satellite climatologies can be

mapped. The comparison with the BCO data also dem-

onstrates that its statistics are representative of the

broader region and longer time periods.

2) THE SATELLITES’ VIEW OF RAIN DURINGRICO

During most of the RICO period the conditions were

typical for shallow convection with cloud tops below the

freezing level; however, a few exceptional days were

observed, where deep convective disturbances passed

the region (13–14 December, 9–10 January, and 13

January). A time series of S-Pol area-averaged rain rates

over the northeast (NE) S-Pol radar domain (Fig. 5)

shows that those days experienced more intense rainfall

with rain rates exceeding 10mmday21. Note that the

calculation of area-averaged rain rates includes both

raining and nonraining grid boxes. Hence, area-

averaged rain rates are much smaller than the pixel

rain rates at original resolution (Fig. 4), and are most

often below the 6mmday21 threshold used in Fig. 2b to

define the light rain volume fraction.

For a comparison with the satellite products, rain rates

from S-Pol are averaged to daily area-averaged rain

rates for the two-month RICO period. For the spatial

average we use only the NE S-Pol radar domain in order

to avoid any island effects. This limitation is necessary

because the HOAPS dataset masks data within 50km

distance to any coast to avoid land influences on the

measured brightness temperatures. The NE S-Pol radar

domain also comprises an area of approximately 28 3 28,
overlapping with 4, 16, and 64 grid boxes at original

resolution of the satellite data (Fig. 6). During the 58 full

days of RICO the S-Pol measured rain on all but one day

(see RR. 0mmday21 in Fig. 7). Clearly all of the three

satellite climatologies miss rain on a number of days.

MARCH 2015 BURDANOW ITZ ET AL . 563



However, the number varies substantially with GPCP

1DDobserving rain on only 25 days, whereasHOAPS-C

(38) and TMPA (53) perform better. The choice of the

Z–R relationmatters for the classification into days with,

on average, light to moderate rain (0–1mmday21) from

days with on average intense rain (.1mmday21). As

seen in Fig. 4, the TRMM Z–R relation leads to lower

rain rates than the RICO Z–R relation. Regardless of

theZ–R relation, days with, on average, less intense rain

are mostly responsible for the observed differences in

rain occurrence among the satellite climatologies.

If days are very heterogeneous in their temporal dis-

tribution of rain events—for instance, if the early morn-

ing was rainy, whereas the remainder of the day was

dry—the limited satellite overpasses may become an is-

sue, especially when only a short period is considered

such as here. For HOAPS-C the chance of detecting

a rain event is completely bound to available overpasses

of SSM/I, whereasGPCP 1DD and TMPAuse additional

data sources to fill gaps of missing SSM/I overpasses.

During the whole RICO period, one day (21 January)

contained no SSM/I overpass at all, and five days had only

one overpass. In those cases with fewer than three SSM/I

overpasses per day, HOAPS detected less rain than the

other products (not shown). The fact that HOAPS has

fewer days with rain than TMPA (Fig. 7) turns out to be

related to a limited overpass sample, although differences

in their detection algorithm also play an important role,

a point we comeback to later. The poorer performance of

GPCP 1DD over the NE S-Pol domain jumps out. GPCP

1DD tends to observe rain on days with disturbed con-

ditions but frequently misses light rain. Even though both

GPCP 1DD and HOAPS-C contain SSM/I sensor data,

their retrievals are fundamentally different. HOAPS-C

only uses available SSM/I overpasses to retrieve the

spatial rain distribution and rain intensity per 6-hourly

time step, whereas GPCP 1DD calculates the fractional

occurrence on a monthly basis from SSM/I and SSMIS

using GPROF2004. This percentage of time steps with

rain is then distributed among the coldest IR-retrieved

3-hourly time steps, assigning a constant rain rate, which

sums up to the GPCP SGmonthly product. Thus, the low

rain occurrence in GPCP 1DD largely depends on the

distribution of the coldest IR-retrieved brightness tem-

peratures, which are mainly caused by clusters of deeper

convective clouds and possibly surrounding cirrus.

The satellite products estimate daily area-averaged

rain rates that are, on average, somewhat higher than

what is measured by the S-Pol radar (Fig. 8). HOAPS-C

and TMPAmatch the cumulative rain contribution of the

S-Pol radar up to intensities of about 0.5mmday21. Be-

tween 0.4 and 4mmday21, GPCP 1DD strongly un-

derestimates the contribution of these rain intensities to

the total rain amount; TMPA has a similar tendency.

However, HOAPS-C agrees well with the rain-rate dis-

tribution of the RICOZ–R relation of S-Pol, whereas the

TRMMZ–R distribution contains a higher fraction of low

rain rates. GPCP 1DD overestimates the daily area-

averaged rain rates the most, with up to one order of

magnitude higher daily area-averaged rain rates than the

FIG. 4. Frequency of occurrence of rain rates fromMRR (April 2010–April 2012) deployed at

BCO (blue) and the S-Pol during RICO [black: Z–R Eq. (1); gray: Z–R Eq. (2)]. Rain rates ,
2.64mmday21 are not shown because of the 7-dBZ minimum threshold applied to S-Pol. The

dashed line marks the slope where all rain rates contribute equally to rainfall.
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S-Pol radar. The S-Pol radar yet might underestimate the

rain rates because of its decreasing resolution with range,

as mentioned in section 3b(1). The differences between

satellite and radar data at higher rain rates may be

somewhat more pronounced because of the relatively

small sample size where single intense rain events can

have a strong influence. But overall the structure of the

cumulative distribution resembles the data for the 8-yr

period in the downstream region (Fig. 3a). Thus, in the

cumulative rain contribution, GPCP 1DD in particular

overestimates the daily area-averaged rain rate as com-

pared with the S-Pol radar.

The daily area-averaged rain rate is a function of the

fractional area covered by rain (rain-covered area) mul-

tiplied by the average rain rate of all raining grid boxes

(conditional rain rate). The rain-covered area depends on

the difference between the considered gridbox size of the

dataset and the chosen domain size, and the rain de-

tection. The RICO domain size is the NE S-Pol radar

domain (28 3 28). For a detected small rain shower, the

rain-covered area mainly depends on the dataset gridbox

size, which determines the minimum rain-covered area.

In GPCP 1DD the minimum rain-covered area is 25% of

the domain size (Fig. 6), whereas TMPA has a minimum

area fraction of less than 2% (1 out of 64 grid boxes). In

contrast to the arbitrarily chosen gridbox and domain

size, the rain detection strongly depends on the retrieval

algorithm of the satellite climatologies. The average rain-

covered area at original spatial resolution amounts to 3%

for the S-Pol radar, 31% for HOAPS-C, 30% for GPCP

1DD, and 58% for TMPA. These estimates reveal two

distinct underlying causes: 1) The satellite datasets pro-

vide markedly higher average rain-covered area fractions

than the S-Pol, which is related to their larger dataset

gridbox size and lower sampling frequency before aver-

aging relative to S-Pol. This effect dominates the average

rain-covered area of the S-Pol radar because the resolu-

tion differences before and after averaging are much

higher than for the satellite datasets. 2) The rain occur-

rence mainly influences the average rain-covered area

among the satellite datasets, explaining the highest area

fraction but lowest gridbox size of TMPA in comparison

with HOAPS-C and GPCP 1DD according to Fig. 7. The

average rain-covered area depends on retrieval-specific

features such as rain detection, and the difference of the

spatiotemporal resolution chosen for reaggregation. The

satellite climatologies’ average rain-covered area is

a stronger function of effects on the retrieval level be-

cause of their similar spatiotemporal dataset resolution in

comparison with the chosen aggregation scale, whereas

the S-Pol rain-covered area stronger scales with resolu-

tion differences through averaging.

The distinct effect of resolution versus rain detection

among the datasets is displayed in Fig. 9, which demon-

strates the partitioning between rain-covered area and

conditional rain rate, whereas all datasets were averaged

to daily rain rates over the 28 3 28 NE S-Pol radar do-

main. The area-averaged rain rate by the S-Pol is a much

stronger function of the rain-covered area than of the

conditional rain rate, a point noted by Nuijens et al.

(2009) in accordance with much earlier findings

(Doneaud et al. 1984). Although clouds with different

dimensions produce different rain intensities—for in-

stance, deeper clouds with a larger area coverage may

rain more heavily—often a wide range of rain rates is

sampled, and even isolated small-sized cumuli can pro-

duce high-intensity, albeit localized, rain showers. Be-

cause of this, the area-averaged rain rate strongly

depends on the actual coverage of rain. However, for the

satellite products the daily area-averaged rain rate de-

pends more strongly on the conditional rain rate than on

the rain-covered area. The fact that rain showers are

usually smaller than the satellite grid boxes causes

a stronger tendency to saturate the whole area (i.e., 100%

rain cover), which decreases the influence of the rain-

covered area compared to the conditional rain rate, and

narrows the rain intensity distribution (Field and Shutts

2009). Consistent with that, the conditional rain rate of

the satellite climatologies is much lower than that of the

S-Pol. Whereas the S-Pol radar scales with area, the

FIG. 5. Time series of area-averaged (NE S-Pol radar domain) rain rates (mmday21) using the TRMM Z–R relation [Eq. (1)] for the

RICO period.

MARCH 2015 BURDANOW ITZ ET AL . 565



satellite climatologies tend to scale with rain intensity.

Combined, the overestimation of the rain-covered

area by the satellite datasets outweighs the under-

estimation in the conditional rain rate, which leads, on

average, to larger daily area-averaged rain rates for

the satellite products relative to the S-Pol radar, as

seen in Fig. 8.

This net effect can give a misleading picture of the

satellite climatology performance. Datasets like GPCP

1DD that partly fail to detect light rain on days charac-

terized by shallow convection may still provide higher

area-averaged rain rates than climatologies with a higher

sensitivity for light rain by overestimating the rain in-

tensity on other days. On average, both types of satellite

climatologies might obtain comparable light rain volume

fractions (Fig. 2).

3) HOAPS-C VERSUS TMPA

Although HOAPS-C and TMPA both perform well in

their contribution of light rain to total rain during the

RICO period, there are differences. For instance,

HOAPS-C estimates lower area-averaged rain rates than

TMPA (Fig. 8), because it has, on average, a smaller area

covered by rain. The lower rain occurrence during RICO

(Fig. 7) hints that HOAPS-C has a smaller capability to

detect rain compared to TMPA. To elaborate more on

the performance of TMPA and HOAPS-C, we conduct

a direct comparison at a resolution that includes only

those time steps in which both satellite products provide

nonmissing data. For HOAPS-C 66% of the potential

6-hourly time steps remain during RICO (vs 100% for

TMPA). We regrid TMPA from its native grid (0.258)
onto a 0.58 grid by area averaging every four grid boxes

that overlap with one HOAPS-C grid box. The 3-hourly

time step of TMPA is reduced to match HOAPS-C by

averaging every two time steps. This coarse-grained ver-

sion TMPA* ensures that an equal number of grid boxes

can be considered in the analysis while the rain amount is

conserved.

The overall number of grid boxes with rain differs

significantly during RICO, with TMPA* (37%) detect-

ing rain more than twice as often as HOAPS-C (15%;

Table 2). HOAPS-C and TMPA* agree in 71% of the

grid boxes that it either rains (13%) or does not rain

(58%), which leaves 29% of cases where they disagree.

Most of the time this is because HOAPS-C does not

show rain when TMPA* does (27%), and only 2% vice

versa. In this respect, the recent version TMPA v7 led to

major improvements relative to the previous v6, which

performed more similarly to HOAPS-C. For instance,

the rain fraction increased from 22% to 37% and the

number of cases where TMPA sees rain and HOAPS-C

does not almost doubled. This improvement of TMPA is

mainly related to the improved sounder algorithm of

AMSU input estimates (Huffman and Bolvin 2014). For

the reason that TMPA agrees best with the S-Pol rain

occurrences during RICO (Fig. 7), we think the de-

tections in TMPA are real.

FIG. 6. Schematic overview of satellite gridbox sizes (TMPA 0.258: blue; HOAPS-C 0.58: red;
GPCP 1DD 18: yellow) and S-Pol radar domain with the S-Pol centered on Barbuda (blue

marker).
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The disagreement between TMPA* and HOAPS-C

may be sought in various explanations. The additional

sampling of microwave sensor data in TMPA, such as

TMI, AMSU, AMSR-E, or MHS data, can fill gaps of

missing SSM/I overpasses in HOAPS-C but cannot ex-

plain the better performance of TMPA* at nonmissing

time steps of HOAPS-C. However, the time averaging

applied in TMPA* might increase the rain occurrence in

TMPA* if a marked time difference is present between

the SSM/I overpass used inHOAPS-C and the additional

PMW overpass used in TMPA. A large time difference

can be related to the incomplete overlapping periods (4.5

of 6h) between HOAPS-C and TMPA*, whereas the

remaining cases are likely related to differences in the

retrieval algorithms. In particular the rain/no-rain dis-

tinction strongly depends on model assumptions and

observed input parameters, which must be subjectively

chosen (Stephens and Kummerow 2007).

Using the ungridded HOAPS-S (scan) data at original

SSM/I scan resolution, the performance of HOAPS-C

during RICO is explored inmore detail bymatching each

HOAPS-S scene to the corresponding S-Pol radar scan

(not shown). Because of the 20-min resolution of the

S-Pol radar, the HOAPS-S images can be matched in time

quite closely (,10min time lag). For TMPA this com-

parison is not performed because of the various satellite

sources entering the product. We find that HOAPS-S

never falsely indicates rain compared to S-Pol (false

alarm). As such, the 2% of cases in which HOAPS-C

shows rain and TMPAdoes notmust therefore be related

to the different algorithms used. In addition, the

HOAPS-S study reveals that for S-Pol scenes in which

rain covers more than 2% of the NE radar domain,

HOAPS-S always depicts rain. In contrast, HOAPS-S

detects rain at rain-covered areas of less than 2% only

when somewhat larger clusters are heterogeneously

FIG. 7. Histogram of relative fraction of 58 RICO days with light (0–1mmday21) and

moderate to intense (.1mmday21) daily area-averaged rain rates of HOAPS-C (red), TMPA

(blue), GPCP 1DD (yellow), and S-Pol shown as thin bars for the TRMM Z–R [Eq. (1), black]

and RICO Z–R [Eq. (2), gray] over the NE S-Pol radar domain.

FIG. 8. Cumulative view on sorted daily area-averaged rain rates

for NE S-Pol radar domain during RICO with HOAPS-C (red),

TMPA (blue), GPCP 1DD (yellow), and S-Pol [black: TRMM Z–

R, Eq. (1); gray: RICO Z–R, Eq. (2)].
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distributed. If isolated rain showers are small and ho-

mogeneously distributed, covering less than 1% of the

radar area, HOAPS-S is unable to detect the rain echo.

In these situations of very small, homogeneously dis-

tributed showers or scenes of unavailable SSM/I over-

passes, TMPA typically outperforms HOAPS-C.

c. Rain intensity and occurrence in the subtropical
North Atlantic upstream and downstream region

The comparison of the three satellite climatologies with

ground-based radar observations during the two-month

RICO campaign in the downstream region emphasizes the

relatively poor performance of GPCP 1DD in regions

where rainfall is produced by isolated smaller cumuli

(Fig. 7). In turn, HOAPS-C and especially TMPA dem-

onstrate a better ability to detect rain on days when low

rain intensities dominate (daily area-averaged rain rates,
1mmday21). Hence, in their contribution to total rainfall

(Fig. 8), rain rates less than 1mmday21 are not negligible,

albeit still underestimated. In GPCP 1DD such rain rates

have hardly any contribution to total rain amount.

The rain intensity distribution during RICO (Fig. 8) is

similar to the 8-yr average in the downstream region

(Fig. 3a). This suggests that the differences in conditional

rain rates and rain-covered area between the satellite

climatologies during RICO are representative for the

region and make their imprint on the climatology. A

frequency distribution (Fig. 10) compares the rain-rate

distributions ofHOAPS-C and TMPA* at 0.58 resolution
[as used in section 3b(3)] for the same downstream (west)

and upstream (east) 88 3 88 boxes for the 8-yr period

1998–2005. Note that Fig. 10 cannot be compared directly

to Fig. 4 because S-Pol radar and MRR have a much

higher spatial resolution than the satellite climatologies.

The results from the shorter RICO period and smaller

radar domain are confirmed for the 8-yr period along the

trajectory (Fig. 10). TMPA* v7 (blue) produces higher

rain rates above 12mmday21 than HOAPS-C in both

regions over the subtropical North Atlantic, whereas

HOAPS-C provides more rain rates between 4 and

12mmday21. Similar to Figs. 3 and 8, HOAPS-C and

TMPA are alike at very low rain rates. However, along

the whole trajectory TMPA* has a higher overall fre-

quency to detect rain than HOAPS-C (Fig. 11),

reaching more than 40% in the western part of the

subtropical North Atlantic (HOAPS-C: 25%). The

higher rain occurrence of TMPA is of similar order, as

shown in Fig. 7, and confirms the vast improvement

from TMPA* v6 to v7 that is mainly due to improve-

ments with AMSU data.

The overall rain occurrence of the MRR during two

years of measurement at 1-min resolution is 5.5% [section

3b(1)]. To better represent the temporal sampling of the

satellite datasets, we average all 1-min rain rates within

a 6-h period. This time averaging drastically increases the

MRR rain occurrence toward 55%. This difference in-

dicates that TMPA might still slightly underestimate the

rain occurrence, which agrees with findings of Behrangi

et al. (2014), who combined the CloudSat CPR with the

TRMM PR to be sensitive to both low and high pre-

cipitation intensities. Nevertheless, the values ofMRR and

TMPA cannot be compared directly because of different

time periods and slightly different locations. TheMRRrain

occurrence also reveals that the time step strongly in-

fluences the rain occurrence. In other words, a rain rate

always needs to be consideredwith respect to its underlying

FIG. 9. Daily area-averaged rain rate (mmday21) of TMPA, HOAPS-C, GPCP 1DD, and S-Pol vs (a) rain-covered

area (%) and (b) conditional rain rate (only rainy grid boxes; mmday21) over the NE S-Pol radar domain.
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area and time step, which are limited by the satellite sensor

footprint and sampling rate, respectively.

The statistics for the entire subtropical North Atlantic

region (108–308N, 208–608W) are given in Table 3,

whereby the values in parentheses correspond to the

88 3 88 downstream (west) and upstream (east) boxes as

displayed in Fig. 1. As during RICO, TMPA* v7 detects

rain more often (26%) than HOAPS-C (10%). In 21%

of the cases TMPA* v7 disagrees with HOAPS-C,

whereas the ratio of disagreement to agreement is

larger in the western region (27%/73%) than in the

eastern region (11%/89%). From these longitudinal

differences we infer that, besides rain occurrence and

rain intensity, the rainfall patterns are important for the

detection, whereby more widespread raining areas are

more easily distinguishable from widespread nonraining

areas. As suggested before, the main reasons for the

better performance of TMPA relative to HOAPS-C are

algorithm related; additional sampling of PMW sensors

used in TMPA is an advantage.

4. Summary and conclusions

Three different satellite climatologies are compared

and evaluated against ground-based remote sensing radar

data to estimate rain occurrence and intensity over the

subtropical North Atlantic. In this oceanic area shallow

clouds with tops below the freezing level dominate, fre-

quently raining at both low and high rain intensities, as

observed by the pointwise vertically scanning MRR

deployed at BCO on Barbados as well as a S-Pol radar

installed on Barbuda for surveillance scans during the

RICO campaign. The large footprint size of most PMW

satellite sensors can lead to an ambiguity of small-scale

intense rain showers and widespread low-intensity rain-

fall. Although these clouds can rain at higher intensities,

we refer to their rainfall as light rain, because intense but

isolated showers covering a small area will lead to rela-

tively low area-averaged rain rates, compared to deeper

and more widespread convection when observed by

satellite sensors over larger areas. For our comparison,

we average all datasets to daily area-averaged (28 3 28)
rain rates, which is a representative measure for the rain

amount in a certain area within one day.

During the dry season (December–May), low rain in-

tensities dominate in the downstream western Atlantic

region of the trades with a higher fraction of light rain

contributing to total rainfall amount. This region receives

twice as much rainfall during the wet season (June–

November) compared to the dry season caused by addi-

tional convective rain of higher intensities in connection

with a lower volume fraction of light rain. Toward the

upstream eastern Atlantic region, these seasonal differ-

ences vanish and rainfall is scarce. For these reasons, the

downstream region during the dry season is well suited to

evaluate the ability of three satellite climatologies to

capture light rain events.

We compare 58 full days of S-Pol radar data from the

RICO campaign (winter 2004/05) with three satellite

climatologies. The satellite datasets HOAPS-C, TMPA,

and GPCP 1DD underestimate the rain occurrence as

compared to the S-Pol radar; TMPA misses 7% of the

rainy days during RICO, whereas HOAPS-C misses

33% and GPCP 1DD misses 56%. The deficit of GPCP

1DD is likely caused by insufficient sensitivity for light

rain of the GPROF2004 algorithm using SSM/I and

SSMIS, whereas the partitioning driven by IR satellite

sensors is rather inaccurate. HOAPS-C has missing data

in one-third of its 6-hourly time steps during RICO be-

cause of missing SSM/I overpasses. TMPA profits from

TABLE 2.Nonmissing data (%; top half of table) and contingency

table (%; bottom half of table) for rain rates R of TMPA* v7

(values for v6 in parentheses) and HOAPS-C at 0.58 for 58 days of

RICO (NE radar domain).

HOAPS-C TMPA* v7 (v6)

Pixels without rain 85 63 (78)

Pixels with rain 15 37 (22)

TMPA* v7 (v6)

R . 0

TMPA* v7 (v6)

R 5 0

HOAPS-C R . 0 13 (9) 2 (6)

HOAPS-C R 5 0 27 (14) 58 (71)

FIG. 10. The frequency distribution of rain rates (mmday21) at

0.58 for the eastern upstream box (solid line) and the western

downstream box (dashed line) for HOAPS-C (red), TMPA* cur-

rent v7 (blue), and the previous v6 (gray).
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its calibrator TCI in combination with the more recent

GPROF2010 as well as PMW sounders, which improve

the performance againstHOAPS-C andGPCP 1DD.We

further compare the satellite climatologies for 8 years

over a larger area in the subtropical North Atlantic, giv-

ing similar results. The combination of a markedly high-

er rain occurrence and high average rain intensity at 0.58
in TMPA relative to HOAPS-C and GPCP 1DD causes

higher daily area-averaged rain rates and total

rain amounts in TMPA for most parts of the subtropical

North Atlantic.

In the satellite climatologies the average rain intensity

from all rainy grid boxes at original resolution (conditional

rain rate) contributes stronger to the daily area-averaged

rain rate than the rain-covered area. Coarse spatial reso-

lution, and in particular the temporal averaging of satellite

rain rates, diminishes that relationship and narrows the

rain intensity distribution (Field and Shutts 2009; Liu and

Allan 2012). Although the dataset spatiotemporal resolu-

tion has no influence on the actual ability of a satellite

climatology to detect rain, it influences the partitioning

between conditional rain rate and rain-covered area. The

S-Pol radar scales much more strongly with the rain-

covered area than with the average rain intensity mea-

sured. The relationship between rain-covered area and

average rain intensity should thus depend on the spatial

resolution of the dataset. This is not apparent in the sat-

ellite datasets, given that their rain-covered area more

strongly depends on rain detection than resolution

differences. TheHOAPS scan data (HOAPS-S) revealed

that HOAPS-C certainly detects rain showers covering at

least 2%of theNES-Pol radar domain duringRICO if an

SSM/I overpass is available. A coarse-grained 0.58,
6-hourly averaged version of TMPA detects rain more

often compared to HOAPS-C nonmissing time steps,

which may indicate that TMPA can detect rain showers

with less than 2% rain coverage. However, mismatches in

dataset time intervals result in a maximum overlap of

only 4.5h of the 6-h periods of both data, which might

to some extent explain the disagreement. Overall

HOAPS-C is rather limited by sampling of SSM/I sen-

sors, in particular in dry areas, whereas GPCP 1DD and

TMPA are rather limited by algorithm assumptions.

The satellite data sources and retrieval-specific differ-

ences mainly affect the performance of the satellite cli-

matologies. Even though the update to GPROF2004

greatly helped to relatively increase the rain occurrence in

GPCP 1DD v1.2 during RICO by more than 50% com-

pared to the predecessor v1.1, the current GPCP 1DD is

still deficient with respect to (light) rain detection. GPCP

1DD predominantly detects those rain events with large

area coveragewhilemissing rain eventswithweak or small-

scale showers. On the other hand, once rain is detected,

GPCP 1DD overestimates the daily area-averaged rain

rate against the S-Pol, as should be expected. Similar to

GPCP 1DD, TMPA v7 features an absolute increase in

rain occurrence of about 10% compared to the previous

TMPAv6 because of algorithm improvements in the use of

AMSUdata.With the S-Pol radar as a reference and under

the assumption that rainfall during RICO follows the av-

erage rain conditions, TMPAperforms best in terms of rain

detection in an area dominated by light rain, followed by

HOAPS-C and GPCP 1DD.
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