English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The Retinal Projectome Reveals Brain-Area-Specific Visual Representations Generated by Ganglion Cell Diversity

MPS-Authors
/persons/resource/persons73352

Robles,  Estuardo
Department: Genes-Circuits-Behavior / Baier, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons78306

Laurell,  Eva
Department: Genes-Circuits-Behavior / Baier, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons39224

Baier,  Herwig
Department: Genes-Circuits-Behavior / Baier, MPI of Neurobiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Robles, E., Laurell, E., & Baier, H. (2014). The Retinal Projectome Reveals Brain-Area-Specific Visual Representations Generated by Ganglion Cell Diversity. CURRENT BIOLOGY, 24(18), 2085-2096. doi:10.1016/j.cub.2014.07.080.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-2451-B
Abstract
Background: Visual information is transmitted to the vertebrate brain exclusively via the axons of retinal ganglion cells (RGCs). The functional diversity of RGCs generates multiple representations of the visual environment that are transmitted to several brain areas. However, in no vertebrate species has a complete wiring diagram of RGC axonal projections been constructed. We employed sparse genetic labeling and in vivo imaging of the larval zebrafish to generate a cellular-resolution map of projections from the retina to the brain. Results: Our data define 20 stereotyped axonal projection patterns, the majority of which innervate multiple brain areas. Morphometric analysis of pre- and postsynaptic RGC structure revealed more than 50 structural RGC types with unique combinations of dendritic and axonal morphologies, exceeding current estimates of RGC diversity in vertebrates. These single-cell projection mapping data indicate that specific projection patterns are nonuniformly specified in the retina to generate retinotopically biased visual maps throughout the brain. The retinal projectome also successfully predicted a functional subdivision of the pretectum. Conclusions: Our data indicate that RGC projection patterns are precisely coordinated to generate brain-area-specific visual representations originating from RGCs with distinct dendritic morphologies and topographic distributions.