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Abstract

The hierarchic combination of linear arithmetic and first-order logic with free
function symbols, FOL(LA), results in a strictly more expressive logic than
its two parts. The SUP(LA) calculus can be turned into a decision procedure
for interesting fragments of FOL(LA). For example, reachability problems for
timed automata can be decided by SUP(LA) using an appropriate transla-
tion into FOL(LA). In this paper, we extend the SUP(LA) calculus with an
additional inference rule, automatically generating inductive invariants from
partial SUP(LA) derivations. The rule enables decidability of more expres-
sive fragments, including reachability for timed automata with unbounded
integer variables. We have implemented the rule in the SPASS(LA) theo-
rem prover with promising results, showing that it can considerably speed
up proof search and enable termination of saturation for practically relevant
problems.
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1 Introduction

One important aspect for successful development of automated reasoning
calculi for logical languages is the potential of the calculus to act as a decision
procedure for known decidable classes and to be an instrument for detecting
new decidable fragments. This is because a sound and complete calculus
for some logical language that can at the same time be used as a decision
procedure has a high potential to be successfully applied in practice. The
superposition calculus has been very successful in this respect for first-order
logic, e.g., [3, 12, 19]. This is further illustrated by the fact that the leading
first-order ATPs (E, SPASS, Vampire) are all superposition-based.

In this paper we continue this line of work for the FOL(LA) language, the
hierarchic combination of first-order logic with linear arithmetic. The hier-
archic superposition calculus SUP(LA) [1] is a sound calculus for FOL(LA)
and together with a sufficient completeness assumption, also complete. Com-
pleteness cannot be achieved in general, because the FOL(LA) language can
express second-order properties. For example, starting with LA over the re-
als, the naturals can be expressed in FOL(LA) [20] and it is known that the
addition of a single monadic predicate to the LA language already causes
undecidability [17], in general.

Nevertheless, the SUP(LA) calculus is a decision procedure for the FOL(LA)
ground case [21] and for the FOL(LA) fragment resulting from the transla-
tion of timed automata [15]. In this paper we extend the latter result to the
fragment corresponding to the translation of timed automata extended with
unbounded integer variables. Termination of the SUP(LA) calculus on this
fragment is made possible by a new simplification technique based on the
automatic generation of inductive invariants. The invariant generation rule
combines ideas from acceleration for automata [18, 6] with the automatic
detection of infinite loops [22] in SUP(LA) derivations.

The following example illustrates the basic idea: assume we have used
the clause x = 1 ‖ → P (x) in a derivation of x = 2 ‖ → P (x) (clauses
are in purified form: arithmetic literals to the left of ‖, first-order literals to
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the right; x= 1 ‖ → P (x) means ∀x(x= 1 → P (x))). Depending on how
it was derived, the same sequence of inferences may be applied to the sec-
ond clause, yielding a third clause with right-hand side P (x). For instance,
the second clause may have been obtained by resolving the first one with
x′ = x+1 ‖ P (x) → P (x′). Then we could also derive x = 3 ‖ → P (x),
x=4 ‖ → P (x) and so on. The idea of the invariant generation rule is to
detect such loops during proof search, in the form of clauses with the same
free (i.e., non-arithmetic) part (up to variable renaming), and to determine
the transformation relating their arithmetic constraints. If it is possible to
express the transitive closure of this transformation as a conjunction of arith-
metic literals, then a corresponding invariant clause is derived. In the above
example, such a clause would be k≥1, x=k ‖ → P (x), where k is an integer
variable.

This paper is organized as follows: Section 2 gives some preliminary defi-
nitions relating to superposition modulo linear arithmetic. Section 3 defines
the constraint induction rule in its general form, and presents a class of lin-
ear arithmetic constraints for which it can be effectively implemented. In
Section 4, we define timed automata extended with unbounded integer vari-
ables, and we show that SUP(LA) together with the constraint induction
rule provides a decision procedure for the corresponding reachability prob-
lem. Section 5 deals with our implementation of the rule and shows some
promising experimental results. We end with a summary of the results and
an outlook in Section 6. Detailed definitions and proofs can be found in a
technical report [14].
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2 Preliminaries

We will use the notions and notations for hierarchic superposition modulo
linear arithmetic SUP(LA) [4, 1]. In SUP(LA), clauses appear in purified
form Λ ‖ Γ → ∆ where Λ is a sequence of linear arithmetic literals over real
and integer variables, called the clause constraint, and Γ,∆ are sequences
of free first-order atoms, called the free part, sharing universally quantified
variables with Λ. Semantically, a clause Λ ‖ Γ → ∆ is interpreted as the
universal closure of the implication (

∧

Λ∧
∧

Γ) →
∨

∆. A constrained empty
clause Λ ‖ ✷ represents a contradiction if Λ is satisfiable.

We use lowercase Latin characters x, y, z to denote variables. Vectors of
variables are denoted by boldface characters (x). We use the notation Λ[x]
to mean that x are the variables occurring in Λ. When x is clear from the
context, we also denote by Λ[y] the result of substituting all occurrences of
variables from x in Λ by the corresponding variables from y. Substitutions
are denoted by lowercase Greek letters (σ, τ). A substitution is called simple,
if it maps every variable of arithmetic sort to an arithmetic term.

The overall superposition calculus is based on a reduction ordering that is
total on ground atoms. In particular all ground terms of the arithmetic sort
containing only arithmetic symbols are assumed to be strictly smaller than
any ground term containing a free function symbol. For example, this can
be achieved by an LPO (lexicographic path ordering) where the arithmetic
symbols are smaller in the precedence than any free symbol. This ordering
on the ground atoms is then lifted to clauses via the usual twofold multiset
extension. A ground clause C is redundant in some clause set N , if it follows
from smaller clauses in N . Redundancy is lifted by instantiation to clauses
with variables. The minimality of the arithmetic symbols ensures that, when-
ever a clause C is made redundant by smaller clauses C1, . . . , Cn, it remains
redundant if we modify the constraints of the Ci in an equivalence-preserving
way. For instance, we may simplify constraints by eliminating variables not
occurring in the free part of the clause.

To keep the presentation simple, we use superposition left (ordered res-
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olution) as the only inference rule, and subsumption as the only reduction
rule. We will not need factoring for the types of clause sets considered in
this paper.

A clause C1 = Λ1 ‖ Γ1 → ∆1 subsumes a clause C2 = Λ2 ‖ Γ2 → ∆2 if
there is a substitution σ such that Γ1σ ⊆ Γ2, ∆1σ ⊆ ∆2 and ∀x ∃y (Λ2 →
Λ1σ) holds in the theory of linear arithmetic, where x are the variables oc-
curring in Λ2 and y the variables occurring in Λ1σ but not in Λ2. Note that
in theorem proving derivations, forward subsumption (i.e. removing a newly
derived clause which is subsumed by an old clause) does not need to be strict
to maintain completeness.

The ordered resolution rule is

Λ1 ‖ Γ1, A → ∆1 Λ2 ‖ Γ2 → ∆2, B

Λ3 ‖ (Γ1,Γ2 → ∆1,∆2)σ

such that σ is the most general simple unifier of A and B; A is strictly
maximal in Γ1, A → ∆1; B is strictly maximal in Γ2 → ∆2, B.

The calculus SUP(LA) is complete for clause sets that enjoy sufficient
completeness, meaning that every ground non-arithmetic term is equal to
some arithmetic ground term. A sufficient condition for a clause set to be
sufficiently complete is the absence of function symbols ranging into the
arithmetic sorts (real or integer).
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3 Constraint Induction

Given a relation R ⊆ R
2n, the composition R ◦ R is the relation such that

(R ◦R)(x1, . . . , xn, x
′
1, . . . , x

′
n) holds if and only if there exist y1, . . . , yn such

that R(x1, . . . , xn, y1, . . . , yn) and R(y1, . . . , yn, x
′
1, . . . , x

′
n). If we define R

1 =
R and Rk = Rk−1 ◦ R, then the transitive closure of R is the relation R+

such that R+(x1, . . . , xn, x
′
1, . . . , x

′
n) if and only if there exists k ≥ 1 such

that Rk(x1, . . . , xn, x
′
1, . . . , x

′
n).

If a clause in a derivation has an ancestor (i.e., a clause to which it is
related by a sequence of rule applications) with the same free part (modulo
variable renaming), then the clause can be used to derive a third clause with
the same free part, and so on. This yields a potentially infinite (depending
on the constraints) sequence of inferences, where clauses differing only in the
arithmetic constraint are being derived.

The idea of the invariant generation rule is to find the transformation
relating the constraints along the sequence and to compute its transitive
closure. To find the transformation, the sequence of inferences is applied
to a parameterized version of the initial clause, as shown in Figure 3.1. If
the closure can itself be expressed as a constraint, then we can derive a
corresponding inductive invariant clause which can be used to subsume all
its instances, thereby avoiding repeated applications of the same sequence of
inference rules.

Λ0 ‖C D1 . . . Dm

Λm ‖C

. . .

(a)

❀

x=p ‖C[x] D1 . . . Dm

Λ∆ ‖C

. . .

(b)

❀ Λ0[x],Λ
k
∆[x,x

′, k] ‖C[x′]

(c)

Figure 3.1: After a loop has been detected during proof search (a), the
corresponding inferences are replayed on a parameterized clause (b) and the
inductive invariant clause is derived (c).
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The parameterized clause is of the form x1=p1, . . . , xn=pn ‖ C[x1, . . . , xn],
where pi are fresh parameters (i.e., arithmetic constants) not appearing any-
where in the clause set, one for each arithmetic variable in the clause Λ0 ‖ C.
After the inferences leading from Λ0 ‖ C to Λm ‖ C have been performed
on the parameterized clause, a clause of the form Λ∆ ‖ C is obtained. This
replaying of inferences is always possible, because the SUP(LA) calculus does
not take the clause constraints into account when deciding which inferences
to perform (the constraints are only considered when testing for subsump-
tion, or when checking satisfiability of an empty clause’s constraint). Also
note that the parameters pi are introduced only for the purpose of replay-
ing the derivation, and do never appear in the actual clause set, thus they
play no semantic role. The constraint Λ∆ will contain variables from the free
part, as well as parameters pi, which stand for the constraint variables of the
original parameterized clause1.

Example 1. Consider the inference

x=1 ‖ → P (x) x′=x+1 ‖ P (x) → P (x′)

x=2 ‖ → P (x)

from the introduction. We would now perform the inference

x=p ‖ → P (x) x′=x+1 ‖ P (x) → P (x′)

x=p+1 ‖ → P (x)

to get x = p+ 1 as Λ∆.

If we replace the parameters by their corresponding variables, and replace
the remaining variables by their primed versions, we obtain Λ∆[x1, . . . , xn,

x′
1, . . . , x

′
n], which describes a relation2 R∆ ⊆ R

2n. We write Λk
∆ for the

constraint representing Rk
∆, if it exists. This constraint will in general contain

k as an additional integer variable (we chose k to be distinct from all xi, x
′
i).

Note that (Λ0[x] ∧ Λk
∆[x,x

′, k]){k 7→ 1} is equivalent to Λm[x].

Definition 2 (Constraint Induction). Let N be a clause set containing two
clauses Λ0 ‖ C,Λm ‖ C with identical free part (up to variable renaming) such
that Λm ‖ C was derived from Λ0 ‖ C using clauses D1, . . . , Dm in N . Let
Λ∆ be the constraint obtained by replaying the derivation as described above,

1Possibly after simplification and variable elimination to get rid of variables not occur-
ring in C.

2Some parameters and variables may not occur in Λ∆, we may then just consider them
to be unconstrained, i.e., they can take any value in R.
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and suppose that Λk
∆ exists. The constraint induction rule is the inference

rule
Λ0 ‖ C D1 . . . Dm Λm ‖ C

Λ0[x],Λ
k
∆[x,x

′, k] ‖ C[x′]

Proposition 3 (Soundness of Constraint Induction). Let N be a clause set,
and assume Λ0[x],Λ

k
∆[x,x

′, k] was derived from Λ0 ‖ C,D1, . . . , Dm,Λm ‖ C ∈
N by constraint induction. Then N |= Λ0[x],Λ

k
∆[x,x

′, k].

Proof.

C[p], D1, . . . , Dm |= Λ∆[p,x
′] → C[x′] (3.1)

=⇒ D1, . . . , Dm |= (C[p] ∧ Λ∆[p,x
′]) → C[x′] (3.2)

=⇒ D1, . . . , Dm |= (C[x] ∧ Λ∆[x,x
′]) → C[x′] (3.3)

=⇒ D1, . . . , Dm |= (C[x]∧

Λ∆[x,x
′] ∧ Λ∆[x

′,x′′] ∧ · · · ∧ Λ∆[x
(k−1),x(k)]) → C[x(k)] (3.4)

=⇒ D1, . . . , Dm |= (C[x] ∧ ∃k(Λk
∆[x,x

′, k])) → C[x′] (3.5)

=⇒ D1, . . . , Dm |= (C[x] ∧ Λk
∆[x,x

′, k]) → C[x′] (3.6)

=⇒ N |= (Λ[x] ∧ Λk
∆[x,x

′, k]) → C[x′] (3.7)

(3.1) holds by soundness of SUP(LA) and the fact that x = p ‖ C[x] is
equivalent to C[p], (3.2) follows because C[p] is ground, (3.3) follows because
the p do not occur outside of C[p] and Λ∆[p,x

′], (3.4) follows by induction
on k, (3.5) follows by definition of Λk

∆, (3.6) is obtained by turning the
existential quantifier on the left-hand side of the implication into an implicit
outermost universal quantifier, as k doesn’t appear in C[x′], (3.7) follows
because D1, . . . , Dm ∈ N and N |= Λ[x] → C[x].

The constraint induction rule is only applicable if Λk
∆ exists and can

be effectively computed. We will now look at a class of linear arithmetic
constraints for which this is always the case. Given two relations R1 ⊆ R

2n

and R2 ⊆ R
2m, the product of R1, R2 is the relation R ⊆ R

2(m+n) such that
R(x,y,x′,y′) if and only if R1(x,x

′) and R2(y,y
′), where x = x1, . . . , xn and

y = y1, . . . , ym. If R is the product of R1, R2, then Rk(x,y,x′,y′) if and only
if Rk

1(x,x
′) and Rk

2(y,y
′). Hence we can compute the transitive closure of a

product relation if we can compute the transitive closure for each component
relation.
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Proposition 4. Let R(x1, . . . , xn, x
′
1, . . . , x

′
n) ⊆ R

2n be defined by
∧

i∈I

xi + αijxj + ai # x′
i ∧

∧

αij 6=0

x′
j = 0

for I ⊆ {1, . . . , n}, αij ∈ R, αii = 0 for all 1 ≤ i ≤ n, ai ∈ R and # ∈ {<,≤
,≥, >}. Then Rk(x1, . . . , xn, x

′
1, . . . , x

′
n) holds if and only if

∧

i∈I

xi + αi,jxj + kai # x′
i ∧

∧

αij 6=0

x′
j = 0

Proof. By induction on k.

Proposition 5. Let R(x1, . . . , xn, x
′
1, . . . , x

′
n) ⊆ R

2n be defined by
m
∧

l=1

∑

j∈J

βljxj ≤ dl ∧
∧

j∈J

x′
j = δjxj + cj

for J ⊆ {1, . . . , n}, m ≥ 1, δj ∈ {0, 1} and cj, βlj , dl ∈ R.
Then Rk(x1, . . . , xn, x

′
1, . . . , x

′
n) holds for k ≥ 2 if and only if

m
∧

l=1

(

∑

j∈J

βljxj ≤ dl ∧
∑

j∈J

βlj (δj (xj + (k − 2)cj) + cj) ≤ dl

)

∧
∧

j∈J

x′
j = δj (xj + (k − 1)cj) + cj

Proof. A straightforward proof using matrix operations can be found in [6].

In the following, we will apply the induction rule to constraints that de-
scribe products of the kinds of relations described in Propositions 4 and 5.
It turns out that this is sufficient to turn SUP(LA) with constraint induc-
tion into a decision procedure for timed automata extended with unbounded
integer variables, as long as they satisfy certain flatness properties (Section
4) and also speed up proof search, shorten proofs and enable termination of
saturation for other kinds of problems (Section 5).

If we don’t insist on being able to express the transitive closure as a single
conjunction, then it becomes possible to compute the transitive closure of
more involved types of constraints [10, 25, 16, 8]. For instance, if the closure
can be expressed in Presburger arithmetic, we can derive several clauses
that together constitute the inductive invariant (by expressing the closure in
disjunctive normal form and introducing one clause per disjunct). For the
time being, we restrict ourselves to constraints of the above form. We plan
to investigate extensions of the rule in future work.
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4 Finite Saturation of

Extended Timed Automata

For a set of variablesX, the sets CC(X), IG(X) and IA(X) of clock constraints
and integer guards, respectively, are defined as

CC(X) : cc ::= x ◦ c | x− y ◦ c | cc∧ cc | true

IG(X) : ig ::= a1x1 + · · ·+ anxn ≤ a | ig∧ ig

where x ∈ X, c ∈ N, ◦ ∈ {<,≤,=,≥, >}, and ai, a ∈ Z. The set IA(X) of
integer assignments consists of all substitutions mapping each x ∈ X to a
term of the form a or x+ a, for a ∈ Z.

Definition 6 (Extended Timed Automaton). An extended timed automaton
is a tuple

T = (L, linit, X, ig
init

, {invl}l∈L, E)

where L is a finite set of locations with initial location linit ∈ L, X is a finite
set of variables partitioned into subsets XC , XD of real-valued clock variables
and integer-valued variables, respectively; ig

init
∈ IG(XD) describes the initial

values of the integer variables; invl ∈ CC(XC) is the invariant of location l;
E ⊆ L × CC(XC) × IG(XD) × IA(XD) × 2XC × L is a finite set of edges.
An edge (l, cc, ig, ia, Z, l′) represents a transition from location l to location
l′. The constraints cc and ig determine when the edge is enabled, and the set
Z contains the clocks to be reset to zero when taking the edge, together with
the assignment ia. If X = XC, T is a classical timed automaton [2, 15].

A state of an extended timed automaton is a tuple (l, ν) consisting of a
location l ∈ L and a valuation ν ∈ X → R for all variables. The initial
states are of the form (linit, νinit) where νinit assigns zero to all clocks and
the values of integer variables satisfy iginit. In any location, the values of all
clock variables increase continously at a constant rate. The automaton can
stay in a location as long as the clock values satisfy the location’s invariant.

10



When the valuation of a state satisfies the guards cc and ig of an outgoing
edge, the corresponding transition can be taken, resetting the clocks in Z and
applying the assignment ia. We can thus view a transition as a relation over
states, i.e., a set of pairs of states. We say that a state s is reachable from
a state s0, if there exists a sequence of states s1, . . . , sn−1 such that (si, si+1)
is contained in some transition, for all 0 ≤ i ≤ n − 1. In this case we also
say that s0 is backward-reachable from sn. If there exists some initial state
s0 such that sn is reachable from s0, then we simply call sn reachable.

Let T = (L, linit, X, iginit, {invl}l∈L, E) be an extended timed automaton.
The encoding of reachability for extended timed automata is analogous to
that for classical timed automata [15], except that clauses encoding discrete
transitions now also include integer guards and assignments. We use a reach-
ability predicate Reach, and constant symbols l ∈ L for every location1. The
vector x contains the clock variables variables XC , z contains the integer
variables XD. Furthermore, we fix a bijection ′ : X → X ′ such that x′ ∈ X ′

for any x ∈ X. The clause

x=0, iginit(z) ‖ → Reach(x, z, linit).

encodes reachability of the initial states. For every location l ∈ L,

t≥0, x′=x+t, invl[x
′] ‖ Reach(x, z, l) → Reach(x′, z, l).

encodes time-reachability for location l. For a variable x and set of variables
Z, we define the substitution ρZ to be ρZ(x) = 0 if x ∈ Z, and ρZ(x) = x

otherwise, and we extend it to vectors of variables pointwise. For every edge
e = (l, cc, ig, ia, Z, l′) in E, the clause

cc[x], x′=ρZ(x), ig(z), z
′=ia(z), invl′ [x

′] ‖ Reach(x, z, l) → Reach(x′, z′, l′).

represents the discrete transition from l to l′ via e. We refer to the set
containing all of the above clauses as the reachability theory of the automaton.
A reachability conjecture is a clause of the form Λ ‖ Reach(x, z, l) → .

A clause Λ ‖ → Reach(x, z, l) represents the reachability of the set of
states {(l, ν) | ν satisfies ∃y.Λ}, where y are the variables of Λ different from
x, z: if N is a reachability theory, then N |= (Λ ‖ → Reach(x, z, l)) if and
only if the above states are reachable. It follows thatN∪{Λ ‖ Reach(x, z, l) →
} is unsatisfiable if and only if at least one of the states {(l, ν) | ν satisfies ∃y.Λ}
is reachable.

1For readability, we omit the additional terms ensuring maximality of right-hand sides
[15]
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We can also view a conjecture clause Λ ‖ Reach(x, z, l) → as asserting
the backward-reachability of a set of states from some given final states. Un-
satisfiability of N ∪{Λ ‖ Reach(x, z, l) →} then means that the intersection
of the set of reachable states and the set of states backward-reachable from
some final states is non-empty, i.e., there exists reachable final states.

By abuse of terminology, we will say that a clause represents a set of states
S, whenever it represents either the reachability or the backward-reachability
of S, when no confusion arises.

Finally, a transition clause Λ ‖ Reach(x, z, l) → Reach(x′, z′, l′) repre-
sents a transition T , such that ((l, ν), (l′, ν ′)) ∈ T if and only if v, v′ satisfies
∃y.Λ, where y are the variables of Λ different from x, z,x′, z′. Resolving a
positive clause with a transition clause yields another positive clause, which
represents the successor states under the given transition of the states repre-
sented by the first clause. Similarly, resolving a negative clause (i.e., a reach-
ability conjecture) with a transition clause yields again a negative clause
which representes the predecessor states under the given transition of the
states represented by the first clause.

In [15], we show how to ensure that the positive literals of such clauses
are always strictly maximal in the clause. This guarantees that starting from
the encoding of an extended timed automaton and one (or more) reachability
conjecture, only negative unit clauses can be derived (that’s why we don’t
need factoring). The inferences correspond to a backward traversal of the
automaton’s state space, starting from the states represented by the reacha-
bility conjecture. This restriction to backward traversal ensures termination
of saturation for the encoding of classical timed automata (without integer
variables). In the case of extended timed automata, this alone is no longer
sufficient, since the assignments to the integer variables cannot be assumed
to be monotonic. Thus assignments to integer variables that occur on a cycle
may lead to non-termination of saturation, because such a cycle will induce
a loop during proof search. This loop however can be handled by the con-
straint induction rule if the clock constraints and clock resets on such a cycle
satisfy certain properties.

Definition 7 (Acceleratable cycle). Let (L, linit, X, ig
init

, {invl}l∈L, E) be an
extended timed automaton. A sequence (e0, . . . , en−1) of edges ei = (li, cci, igi,
iai, Zi, l

′
i) ∈ E is called a cycle if l′i = li+1 mod n for all 0 ≤ i < n. It is called

a simple cycle, if additionally li 6= lj for all i 6= j. Following [18], a simple
cycle is called acceleratable, if all invariants and guards on the cycle contain
at most a single clock variable, called the clock of the cycle, which is the
same for all invariants and guards on the cycle, and this clock is reset on
all incoming edges to l0. The location l0 is called the reset location. By
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acceleratable cycle, we mean an acceleratable simple cycle. By an integer
cycle, we mean a cycle where at least one edge contains an assignment to
integer variables.

In [18] it is shown that for any acceleratable cycle, there exists an in-
terval [a, b] of clock values, called the window of the cycle, such that [a, b]
contains exactly all the possible execution times of the cycle, independently
of any path prefix. It follows that any k ≥ 1 consecutive executions of the
cycle take time in [ka, kb]. The idea is that we can decompose the cycle into
maximal segments of the form (es, es+1, . . . , es′) (s ≥ s′), where the clock of
the cycle, say y, is reset on edge es′ but on none of the edges es, . . . , es′−1.
There is at least one such segment, since y is reset on edge en−1 (see Figure
4.1 for an illustration). Now assume without loss of generality that each

l0

l1y≤b1

l2

l3 y≤b3

e0
y≥a0

e1

y≥a1
y := 0

e2
y≥a2

e3
y≥a3
y := 0

Figure 4.1: An acceleratable cycle: l0 is the reset location, there are two
segments (e0, e1) and (e2, e3).

edge ei has a guard of the form y ≥ ai, and that each location li has an
invariant of the form y ≤ bi (ai, bi ≥ 0, and possibly bi = ∞ to repre-
sent the invariant true). It is not hard to prove that traversing a segment
es, es+1, . . . , es′ must take between max{as, as+1, . . . , as′} and bs′ time units.
Writing s(i), s′(i) for the first and last indices of the ith segment, respec-
tively, one can then show that traversing the whole cycle must take time in
[a, b] for a =

∑

i max{as(i), as(i)+1, . . . , as′(i)} and b =
∑

bs′(i) (more details
can be found in [18]).

Proposition 8. Let N be the reachability theory of an extended timed au-
tomaton with an acceleratable cycle (e0, . . . , en−1) with clock y and reset lo-
cation l0, and let C0 = Λ0 ‖ Reach(x, y, z, l0) → be a reachability conjecture.
Then we can derive an invariant clause from N ∪ {C0} representing all l0-
states backward-reachable from C0 by transitions e0, . . . , en−1.
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Proof. Let use write Disc(i) for the discrete transition clause of ei, and
Time(i) for the time transition clause of li. For a clause C, let pre(C, i)
denote the result of resolving C with Disc(i) and then resolving the result
with Time(i), and let pre(C, i1, . . . , ik) abbreviate pre(. . . pre(C, i1), . . . , ik).
Starting with C0, after 2n resolution steps, we obtain the clause C2n =
pre(C0, n − 1, . . . , 0) which has the same free part as C0, so we may at-
tempt to apply the constraint induction rule (see Figure 4.2). Let Cp

0 be the

l0 e0

C2n C2n-1

l1 e1

C2n-2 C2n-3

. . .
ln-1 en-1

C2 C1

l0

C0

Disc(n-1)Time(n-1)Time(1)Disc(0)Time(0)

Figure 4.2: Backward traversal of a cycle (e0, . . . , en−1).

parameterized version of C0, i.e.,

x = p, y = py, z = q ‖ Reach(x, y, z, l0) → .

The constraint Λ∆, on which the transitive closure computation is based,
is obtained as the constraint of the clause pre(Cp

0 , 0, . . . , n − 1). Observe
that none of the transition clauses Disc(i), Time(i), nor Cp

0 has a constraint
containing (in-)equations between variables from XC and XD. This property
thus also holds for all clauses derived during the replaying of the derivation,
and Λ∆ is therefore of the form ΛC

∆,Λ
D
∆, where ΛD

∆ contains only variables
from XD and ΛC

∆ contains none of them. Therefore also Λk
∆ can be written

as (ΛC
∆)

k, (ΛD
∆)

k.
Let us first focus on ΛC

∆. Let (es, es+1, . . . , es′) be an arbitrary segment of
the cycle, and let s ≤ i ≤ s′. The clause Time(i) is of the form

ti≥0, x′=x+ti, y
′=y+ti, y≤bi ‖ Reach(x, y, z, li) → Reach(x′, y′, z, li)

and clause Disc(i) is of the form

ai≤y≤bi+n1, y
′=0, igi, z

′=iai(z) ‖ Reach(x, y, z, li) → Reach(x, y′, z′, li+n1)

if i = s, and

ai≤y≤bi+n1, igi, z
′=iai(z) ‖ Reach(x, y, z, li) → Reach(x, y, z′, li+n1)

otherwise2. Let C be an arbitrary reachability conjecture referring to the
location ls′ , and with a constraint Λ not containing any (in-)equations mixing

2a+n b stands for (a+ b) mod n.
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variables from XC and XD. We can thus write Λ as ΛC ,ΛD. It is easy to
verify that the clause pre(C, s′, . . . , s) has a constraint of form

ts, ts+1, . . . , ts′ ≥ 0, as′ ≤ y + ts + · · ·+ ts′ ≤ bs′ , ΛC [x+ ts + · · ·+ ts′ , 0]
as′−1 ≤ y + ts + · · ·+ ts′−1 ≤ bs′ ,

...
as ≤ y + ts ≤ bs′

or, replacing ts + · · ·+ ts′ by t,

t ≥ 0,max{as, . . . , as′} ≤ y + t ≤ bs′ ,Λ
C [x+ t, 0].

Now assume that the cycle consists of k ≥ 1 segments indexed by s(1),
s′(1), . . . , s(k), s′(k), respectively, with s(1) = 0, s′(k) = n−1. The clause re-
sulting from the replay of the dervation is pre(Cp

0 , 0, . . . , n−1) = pre(Cp
0 , s(1),

. . . , s′(k)) and has constraint Λ∆. It follows by induction on k and the pre-
vious observation that ΛC

∆ is of the form

t1, . . . , tk ≥ 0,max{as(1), . . . , as′(1)}≤ y+t1 ≤ bs′(1),p = x+t1+. . .+tk, py = 0
max{as(2), . . . , as′(2)}≤ t2 ≤ bs′(2),

max{as(3), . . . , as′(3)}≤ t2 ≤ bs′(3),
...

or, replacing t1 + · · ·+ tk by t,

t ≥ 0, a ≤ y+t ≤ b,p = x+t, py = 0

where a =
∑

i max{as(i), . . . , as′(i)} and b =
∑

i bs′(i). Eliminating t, we get

a ≤ p− x+ y ≤ b,p ≥ x, py = 0.

Replacing variables by their primed versions, and parameters by their corre-
sponding variables, we get

a ≤ x− x′ + y′ ≤ b,x ≥ x′, y = 0.

By Proposition 4, the transitive closure (ΛC
∆)

k is

ka ≤ x− x′ + y′ ≤ kb,x ≥ x′, y = 0.

Now we consider ΛD
∆. Let iai, iai be the integer guard and assignment of

edge ei, respectively. Remember that iai is a substitution with domain XD.
We can prove by induction over the derivation that ΛD

∆ is of the form

ig0[z], (ig1[z]) ia0, (ig2[z])(ia1 ia0), . . . , (ign−1[z])(ian−2 . . . ia0),

q = (ian−1 . . . ia0)(z).
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This constraint can be viewed as a normalized instruction [6], which has the
form required by Proposition 5, and the transitive closure (ΛD

∆)
k represents

the XD-valuations corresponding to states reachable by k-fold application of
the instruction. We can thus apply the constraint induction rule and obtain
the invariant clause

Λ0[x, y, z], (Λ
C
∆)

k[x, y,x′, y′, k], (ΛD
∆)

k[z, z′, k] ‖ Reach(x′, y′, z′, l0) →

representing all states backward-reachable from C0 by the cycle (e0, . . . , en−1).

Theorem 9. Let T be an extended timed automaton such that any integer
cycle is acceleratable, and any location belongs to at most one integer cy-
cle. Let N be a clause set containing the encoding of T and a reachability
conjecture. Then N can be finitely saturated by SUP(LA) with constraint
induction.

Proof. Consider a fair derivation N = N0, N1, N2, . . . from N where Ni+1 =
Ni ∪ {Ci} and Ci is the non-redundant result of an inference from clauses
from Ni, and no clause in Ni subsumes Ci. Assume for contradiction that the
derivation is infinite. Since there are only finitely many locations, there must
be infinitely many clauses in the derivation referring to the same location, say
l, (those are clauses of the form Λ ‖ Reach(x, z, l) →) and hence l must lie on
a cycle. If no path from l back to itself involves any integer operations, then
l can only repeat finitely often (see [15] for details). Hence l must lie on an
integer cycle, which by assumption is unique and acceleratable, and at least
one of its locations is a reset location, say lr. Furthermore, lr must also repeat
infinitely often, hence there is an infinite sequence Ci1 , Ci2 , . . . of clauses
referring to lr. Since the derivation is fair, we eventually apply the constraint
induction rule to two successive such clauses, say Cij and Cij+1

. Assume the
rule is a applied at step j of the derivation i.e., the resulting invariant clause
is Cj. Writing Λij ,Λij+1

for the constraints of clause Cij , Cij+1
, respectively,

the invariant clause has the form Λij [x],Λ
k
∆[x,x

′, k] ‖ Reach(x′, lr) →. This
clause cannot eliminated by forward subsumption, for otherwise there would
have to be a clause Λ′ ‖ Reach(x, lr) → in Nj such that

∀x,x′, k.
(

Λij [x],Λ
k
∆[x,x

′, k] → ∃y.Λ′[x′,y]
)

would have to hold, where y are the variables of Λ′ different from x,x′, k.
But then the last premise of the constraint induction rule would also be
subsumed, because Λij+1

is equivalent to
(

Λij [x],Λ
k
∆[x,x

′, k]
)

{k 7→ 1}, and
so the rule could not have been applied in the first place. It follows that
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the invariant clause is contained in Nj+1 and all subsequent clause sets, since
backward subsumption has to be strict. The invariant clause can be resolved
with the clauses corresponding to the edges in the cycle, yielding clauses
of the form Λ[x,x′, k] ‖ Reach(x′, l) → for every location l on the cycle.
Any further traversal of the cycle then yields clauses of the form Λ[x,x′, k+
1] ‖ Reach(x′, l) →, which are subsumed, as

∀x,x′, k. (Λ[x,x′, k + 1] → ∃k′.Λ[x,x′, k′])

holds. Finally, all clauses Cij+m
, m > 0, are instances of Cj (via instantia-

tion of k), and hence eliminated by forward subsumption, so the sequence
Ci1 , Ci2 , . . . cannot be infinite, a contradiction.

Since the encoding of extended timed automata does not introduce any
function symbols ranging into the arithmetic sorts, it is sufficiently complete,
and SUP(LA) is therefore refutationally complete for such encodings. To-
gether with Theorem 9, this implies that SUP(LA) is a decision procedure
for the reachability problem in extended timed automata.
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5 Implementation and Results

We have implemented the constraint induction rule in our SPASS(LA) the-
orem prover [1].

Premise selection. In the current implementation, whenever a clause new
C with a non-empty constraint has been derived by resolution, the clause
store is searched for potential partner clause for constraint induction. First,
the term index is queried to find all clauses with same free part as C. Then
the tree of parent clauses of C is recursively traversed to check whether one
of the retrieved clauses is an ancestor of C. This traversal is stopped as soon
as one of the potential partner clauses has been reached – in which case the
constraint induction rule is applied –, or when the minimum of the derivation
depths of all potential partner clauses has been reached.

Handling of mixed integer constraints. SPASS(LA) currently uses Z3
[11] as a back end for constraint solving, both for satisfiability and implication
checking. Although Z3 supports mixed real/integer constraints, it turned out
that when checking implication between two constraints both containing in-
teger variables (as they arise in our approach), Z3 almost always returned
“unknown”. Since the implication check is needed for subsumption and hence
is ultimately the key to termination, we decided to implement our own impli-
cation test for mixed constraints. The test consists of a preprocessing step,
which tries to eliminate all conjuncts containing integer variables from the
right-hand side of the implication, followed by a call to Z3 with the result-
ing implication problem. The preprocessing works as follows: suppose we
are trying to prove the implication ∀x.Λ2 ⇒ ∃y.Λ1, where Λ1,Λ2 are con-
straints, x are the variables of Λ2 and y are the variables of Λ1 not occurring
in Λ2. Suppose there are atomic constraints φ1 ∈ Λ1, φ2 ∈ Λ2 such that
φ1 = x −

∑n

i=1 αiki # c and φ2 = x −
∑

j∈J
J⊆{1,...,n}

αjk
′
j # c + d, where #

is one of <,≤,=,≥ or >, x is a real (or integer) variable, ki, k
′
j are integer
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variables and c, d ∈ R. If d =
∑

l∈L
L⊆{1,...,n}

mlαil (where ml are integer con-

stants ≥ 1) such that L contains at least the indices missing from J , i.e.,
({1, . . . , n} \ J) ⊆ L, then φ2 implies ∃(k′

j)j∈J .φ1: assign ml to k′
l, and either

kj or kj + mj to the other k′
j. In this case, we can remove φ1 from Λ1. In

the implementation, we currently only consider the case where L = {i} for
some i ∈ {1, . . . , n}, and either J = {1, . . . , n} or J = {1, . . . , n} \ L, which
is enough to handle all implication problems arising in our examples. Never-
theless, we are investigating the use of other solvers that implement complete
quantifier elimination for mixed constraints.

Example 10 (Extended timed automaton). Consider the extended timed au-
tomaton in Figure 5.1, where x1, x2 are clocks and z1, z2 are integer variables.
We want to check whether location L2 is reachable with a valuation such that
z1 ≥ z2 and x2 < 12. Since x2 is never reset to zero, its value represents the
total time elapsed since first entering L1. As the cycle at L1 must be traversed
four times before z1 has overtaken z2, and each cycle traversal takes at least
three time units, such a state is not reachable. This problem can be encoded

L0 L1 L2

x1 := 0,
x2 := 0,
z1 := 0,
z2 := 10

x1≥3?

z1 := z1 + 2,
z2 := z2 − 1

x1 := 0

Figure 5.1: An extended timed automaton.

by the following clause set, where the last clause is the negated conjecture:1

x1=0, x2=0, z1=0, z2= 0 ‖ →L1(x1, x2, z1, z2)
t≥0, x′

1=x1+t, x′
2=x2+t ‖ L1(x1, x2, z1, z2)→L1(x

′
1, x

′
2, z1, z2)

z′1=z′1+2, z′2=z′2−1 ‖ L1(x1, x2, z1, z2)→L2(x1, x2, z
′
1, z

′
2)

t≥0, x′
1=x1+t, x′

2=x2+t ‖ L2(x1, x2, z1, z2)→L2(x
′
1, x

′
2, z1, z2)

x′
1=0 ‖ L2(x1, x2, z1, z2)→L1(x

′
1, x2, z1, z2)

z1≥z2, x2<12 ‖ L2(x1, x2, z1, z2)→

The clause set is satisfiable, and without the constraint induction rule, SPASS(LA)
does not terminate. With constraint induction activated, the invariant clause

k≥1, x1=0, x2≥3k, z1=2k, z2=10−k ‖ → L1(x1, x2, z1, z2)

1For simplicity, we use Li(. . . ) instead of Reach(. . . , Li), and we also omit L0.
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is derived as soon as the cycle has been traversed once, and is used to subsume
all other L1-clauses. SPASS(LA) terminates with the answer “completion
found”2 after deriving 23 clauses.

The next example shows that the induction rule is also useful for speeding
up proof search and finding shorter proofs in the case of unsatisfiable clause
sets.

Example 11 (Water tank controller). Figure 5.2 depicts a water tank con-
troller [1] monitoring the water level x in a water tank, into which water is
flowing with a constant rate cin. Whenever the water level is greater than
200, the controller opens a valve through which water leaves the tank at a
constant rate of cout. We may want to prove that, starting from an empty

S0

S1

S2

x > 200

x ≤ 200

x := x+ cin − cout

x := x+ cin

Figure 5.2: Water tank controller

tank, the water level can reach 200+ cin. This problem can be encoded by the
following clause set:

x > 200 ‖ S0(x)→S1(x)
x ≤ 200 ‖ S0(x)→S2(x)

x′ = x+ cin − cout ‖ S1(x)→S0(x
′)

x′ = x+ cin ‖ S2(x)→S0(x
′)

x = 0 ‖ →S0(x)
x ≥ 201 ‖ S0(x)→

For cin = 1 and cout = 23, SPASS(LA) without constraint induction needs to
derive 1212 clauses before finding a proof of length 211. The proof consists
of repeated traversals of the S0 → S1 → S0 cycle with increasing values of x,
until x = 201 is reached.

2A completion is a satisfiable saturation of the initial clause set.
3In principle, cin and cout don’t need to be instantiated, since the invariant computation

does not care about the values of constants, but our implementation does not yet handle
constant symbols in constraints.
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With constraint induction activated, as soon as the clause x = 1‖ → S0(x)
has been derived from the initial clause x = 0‖ → S0(x) (using the second
and fourth clause) SPASS(LA) detects the cycle and derives the invariant
clause

1 ≤ k ≤ 201, x = k ‖ → S0(x).

which is resolved with the negated conjecture, yielding the empty clause. The
proof has length 9 and SPASS(LA) finds it after deriving 13 clauses in total.

If we replace the last clause with x > 201 ‖ S0(x) →, the clause set
becomes satisfiable. Without constraint induction, SPASS(LA) now derives
1214 clauses before answering “completion found”, whereas with constraint
induction, only 23 clauses need to be derived (among them the above invariant
clause).

Table 5.1 shows the results from the above examples, together with the
total time spent on the problem.

SUP(LA) SUP(LA)+ind
Problem clauses derived time clauses derived time
Extended TA sat – – 23 0.25s
Water tank unsat 1212 33s 13 0.15s
Water tank sat 1214 33s 23 0.18s

Table 5.1: Summary of experimental results
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6 Conclusion

We have presented the constraint induction rule that automatically gener-
ates inductive invariants during proof search in the context of superposition
modulo linear arithmetic. The rule applies to loops in which repeated appli-
cations of the same sequence of inferences yield clauses which differ only in
their arithmetic constraints (their free parts being identical up to renaming
of universally quantified variables). The derived invariant summarizes these
clauses by representing the transitive closure of the transformation relating
the clauses in the loop. The loop can thus be avoided, by using the invari-
ant clause to subsumes its instances, provided that the invariant clause is
smaller in the clause ordering (which is required to maintain completeness of
the calculus). In order to find a well-founded ordering for which this is the
case, one has to ensure that the constraint induction rule is only applied a
finite number of times.

As evidenced by our implementation, the constraint induction rule can
considerably speed up proof search, enabling termination of saturation in
cases where it would otherwise diverge, and allowing shorter proofs to be
found. Since the induction rule applies to clauses with the same free part and
invariants thus only talk about the arithmetic constraints, their computation
does not require proof generalization and schematization techniques that are
necessary to compute invariants for the full first-order setting [22]. Never-
theless, the induction rule significantly increases the power of the SUP(LA)
calculus, making it possible to turn it into a decision procedure for reacha-
bility in timed automata extended with unbounded integer variables. The
decidability of the reachability problem for extended timed automata is not
a new result in itself, as it can be obtained from results on counter automata
[10, 9]. However, we are able to obtain the result using a general-purpose
approach like superposition (which applies to full first-order logic), extended
with an induction rule that is also applicable outside the specific automata
setting.

Preliminary testing of our implementation shows that the rule enables
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termination of saturation and the finding of short proofs for practically inter-
esting problems. We are currently evaluating the use of the rule for problems
from program and protocol verification (particularly in the setting of first-
order probabilistic timed automata [13]) and ontology reasoning. Finally, we
are working on extending the rule to handle wider classes of constraints.
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