Dysregulated Expression of Neuregulin-1 by Cortical Pyramidal Neurons Disrupts Synaptic Plasticity

Amit Agarwal,1,7,8 Mingyue Zhang,2,8 Irina Trembak-Duff,2,8 Tilmann Unterbarnscheidt,1,8 Konstantin Radyushkin,3,9 Payam Dibaj,1 Daniel Martins de Souza,1,10 Susann Boretius,1 Magdalena M. Brzózka,1,11 Heinz Steffens,3 Sebastian Berning,1 Zenghui Teng,2 Maikel N. Gummert,1 Konstantin Radyushkin,3,9 Payam Dibaj,1 Daniel Martins de Souza,1,10 Susann Boretius,1 Magdalena M. Brzózka,1,11 Heinz Steffens,3 Sebastian Berning,1 Zenghui Teng,2 Maikel N. Gummert,1 Konstantin Radyushkin,3,9

1Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
2Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, 48149 Muenster Germany
3Clinical Neuroscience, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
4Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
5Biomedizinische NMR Forschungs GmbH, Max Planck Institute of Biophysical Chemistry, 37077 Göttingen, Germany
6Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
7Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21025, USA
8Co-first author
9Present address: Department of Physiological Chemistry, Focus Program Translational Neurosciences, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
10Present address: Laboratory of Neuroproteomics, Department of Biochemistry, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Sao Paulo 13083-970, Brazil
11Present address: Department of Psychiatry, Ludwig-Maximilian-University Munich, 81377 Munich, Germany
12Present address: Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
*Correspondence: wzhang@uni-muenster.de (W.Z.), schwab@em.mpg.de (M.H.S.)
http://dx.doi.org/10.1016/j.celrep.2014.07.026
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

SUMMARY

Neuregulin-1 (NRG1) gene variants are associated with increased genetic risk for schizophrenia. It is unclear whether risk haplotypes cause elevated or decreased expression of NRG1 in the brains of schizophrenia patients, given that both findings have been reported from autopsy studies. To study NRG1 functions in vivo, we generated mouse mutants with reduced and elevated NRG1 levels and analyzed the impact on cortical functions. Loss of NRG1 from cortical projection neurons resulted in increased inhibitory neurotransmission, reduced synaptic plasticity, and hypoactivity. Neuronal overexpression of cysteine-rich domain (CRD)-NRG1, the major brain isoform, caused unbalanced excitatory-inhibitory neurotransmission, reduced synaptic plasticity, abnormal spine growth, altered steady-state levels of synaptic plasticity-related proteins, and impaired sensorimotor gating. We conclude that an “optimal” level of NRG1 signaling balances excitatory and inhibitory neurotransmission in the cortex. Our data provide a potential pathomechanism for impaired synaptic plasticity and suggest that human NRG1 risk haplotypes exert a gain-of-function effect.

INTRODUCTION

Neuregulin-1 (NRG1) is a pleiotropic growth and differentiation factor, which signals to receptor tyrosine kinases of the ErbB family (Falls, 2003). The human NRG1 gene is a major schizophrenia susceptibility gene (Ayalew et al., 2012; Li et al., 2006), but the underlying link to pathophysiology is not known. Virtually all “at-risk” haplotypes map to noncoding regions of the human NRG1 gene (Stefansson et al., 2002; Weickert et al., 2012), suggesting that altered NRG1 expression increases disease susceptibility. Indeed, both reduced and increased expression of distinct NRG1 variants have been observed in studies of post-mortem brain tissue from schizophrenia patients (Bertram et al., 2007; Law et al., 2006). This includes elevated expression of membrane-bound “cysteine-rich domain” (CRD)-NRG1 (Weickert et al., 2012), the predominant NRG1 isoform in the human brain (Liu et al., 2011). CRD-NRG1 serves as a key regulator of myelination in the peripheral nervous system (Nave and Salzer, 2006) but is not required for myelin assembly in the CNS (Brinkmann et al., 2008), suggesting that it has distinct functions in the brain.

Heterozygous disruption of CRD-NRG1 in mice results in deficits in glutamatergic and cholinergic neurotransmission from the hippocampus to the amygdala (Jiang et al., 2013; Zhong et al., 2008) and impaired short-term memory (Chen et al., 2008). Genetic inactivation of ErbB4, the predominant neuronal NRG1 receptor in the brain, results in increased long-term potentiation (LTP) (Pitcher et al., 2008) and blocked NRG1-mediated LTP.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
suppression in hippocampal slice culture (Chen et al., 2010). In addition, loss of ErbB4 in mice leads to impaired interneuron development, reduced GABAergic neurotransmission (Del Pino et al., 2013; Fazzari et al., 2010; Neddens and Buonanno, 2010), and enhanced limbic epileptogenesis (Li et al., 2012; Tan et al., 2012), demonstrating an important role of ErbB4 signaling in the regulation of inhibitory cortical circuitry. In “gain-of-function” approaches, the treatment of cultured neurons or brain slices with the soluble epidermal-growth-factor-like domain of NRG1 was shown to induce transcription of mRNAs encoding neurotransmitter receptors (Ozaki et al., 1997); to modulate glutamatergic, GABAergic, cholinergic, and dopaminergic neurotransmission (Gu et al., 2005; Kwon et al., 2005; Ting et al., 2011; Woo et al., 2007); to suppress hippocampal synaptic plasticity (Huang et al., 2000; Kwon et al., 2005; Pitcher et al., 2011); and to promote dendritic spine growth (Cahill et al., 2013). Recently, transgenic mice with forebrain-specific overexpression of “soluble” immunoglobulin (Ig)-domain-containing NRG1 ("Ig-NRG1") have been reported to display synaptic dysfunction and behavioral deficits (Yin et al., 2013a). Collectively, these studies suggest that NRG1 functions as a pleiotropic factor in the establishment and fine-tuning of cortical circuitry. In addition, these data support the hypothesis that both reduced and increased NRG1 signaling may interfere with synaptic efficacy. However, the effect of elevated CRD-NRG1 signaling has not been studied in vivo, and due to embryonic lethality of the Nrg1-null mutation (Meyer and Birchmeier, 1995), the consequences of a permanent loss of NRG1 on synaptic functions have not been elucidated.

Here, we have modeled the loss of all NRG1 isoforms and elevated CRD-NRG1 expression in conditional mouse mutants and transgenic mice. Our data provide potential pathomechanisms for cortical disconnectivity in response to chronically altered CRD-NRG1 signaling.

RESULTS

Hypoactivity and Impaired Fear-Conditioned Learning in the Absence of NRG1

Postnatal recombination of a conditional (“floxed”) Nrg1 allele (Li et al., 2002) in forebrain projection neurons using a CamKII-Cre driver line (MINICHELLO et al., 1999) resulted in a 30%–75% reduction of NRG1 protein levels in homozygous floxed Nrg1 mutants harboring the CamKII-Cre transgene (referred to as CK*Nrg1f/+), depending on the cortical region analyzed (Figures 1A, S1A, and S1B). Even at 18 months of age, we observed no signs of neurodegeneration and inflammation in the hippocampus (Figure 1B) or white matter (Figure S1C) and no change in the levels of PSD95, ErbB4, and several glutamate receptor subunits in CK*Nrg1f/+ mutants (Figures 1C, 1D, and S1D).

Next, we performed a behavioral analysis of CK*Nrg1f/+ mutants. We found no significant effects on the startle response and prepulse inhibition (PPI) in CK*Nrg1f/+ mutants (Figures S1E and S1F; data not shown). However, CK*Nrg1f/+ mutants displayed hypoactivity in the open-field test at 3 months of age (Figure 1E). Hypoactivity in CK*Nrg1f/+ mutants was not associated with increased general anxiety in the open-field test (Figure S1G). Administration of the noncompetitive NMDA receptor antagonist MK-801 induces hyperactivity and serves as a pharmacological model of psychosis (Deutsch et al., 1997). A single dose of MK-801 (0.3 mg/kg) administered to control mice (Nrg1f/+ at 3 months (Figure 1F) and 12 months of age (Figure 1H) increased motor activity for more than 1 hr. In contrast, CK*Nrg1f/+ mutants at 3 to 4 months of age showed a strong tendency for reduced MK-801-induced hyperactivity (Figure 1F). At 12 months of age, CK*Nrg1f/+ mutants were no longer hypoactive in the open-field test (Figure 1G). However, MK-801-induced hyperactivity was significantly reduced in CK*Nrg1f/+ mutants and rapidly declined to baseline levels (Figure 1H). To examine the performance in a hippocampus-dependent learning task, we analyzed CK*Nrg1f/+ mutants in a cued and contextual fear-conditioning paradigm. CK*Nrg1f/+ mutants showed a tendency for reduced contextual fear conditioning at 3 to 4 months (Figure 1I) and exhibited a reduced freezing response both to the context and the auditory cue at 12 months of age (Figure 1J). Thus, loss of NRG1 signaling results in progressive deficits in hippocampus-dependent learning.

Loss of NRG1 Signaling Disrupts Synaptic Plasticity and Alters the Balance of Excitatory-Inhibitory Neurotransmission in the Hippocampus

To address whether reduced fear-conditioned learning in CK*Nrg1f/+ mutants might result from impaired LTP, we tested field excitatory postsynaptic potentials (fEPSPs) at the Schaffer collateral (SC)-CA1 synapse of acute hippocampal slices from 18- to 20-month-old CK*Nrg1f/+ mutant and Nrg1f/+ control mice. No change in the input-output curve was observed (data not shown), but paired-pulse facilitation was reduced in CK*Nrg1f/+ mutants (Figure 2A). Next, we induced synaptic potentiation in CA1 by high-frequency stimulation (HFS) of the SC. Short-term potentiation (STP) (1 min after HFS) was reduced, and the magnitude of LTP remained depressed 60 min after induction in CK*Nrg1f/+ mutants (Figure 2B). To examine whether disrupted LTP was associated with changes in synaptic transmission already at younger age, we performed whole-cell patch-clamp recordings in CA1 pyramidal neurons. In 3-month-old CK*Nrg1f/+ mutants, the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) was decreased (Figures 2C and 2D). Conversely, the amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) was increased (Figures 2F and 2G). Both sEPSC and sIPSC frequency were unchanged (Figures 2C, 2E, 2F, and 2H). In addition, the amplitude and frequency of miniature EPSCs (mEPSCs) were depressed in CK*Nrg1f/+ mutants (Figures 2I–2K), whereas mIPSC amplitude was enhanced (Figures 2L and 2M) and mIPSC frequency was depressed (Figures 2L and 2N). In summary, postnatal NRG1 deficiency in projection neurons shifts the balance of excitatory-inhibitory neurotransmission toward enhanced inhibition and leads to reduced LTP in the hippocampus at later stages.

Embryonic NRG1 Signaling Is Not Essential for Interneuron Migration and the Formation of Inhibitory Cortical Circuits

To identify NRG1 functions during the establishment of neuronal circuits, we performed a subset of the above
Figure 1. Behavioral Deficits in Mouse Mutants with a Postnatal Loss of NRG1 in Cortical Projection Neurons

(A) Time course of Cre-mediated NRG1 elimination in cortical projection neurons of CamKII-Cre*Nrg1f/f mutants. (Left) Western blot analysis of cortical protein lysates from mutants (CK*Nrg1f/f) and controls (Nrg1f/f; age 15 months). Arrowheads, full-length CRD-NRG1 (~140 kDa); Ig-NRG1 (~95 kDa), and C-terminal processing product (~60 kDa). Asterisk, unspecific protein band. (Right) Densitometric quantification of 140, 95, and 60 kDa NRG1 bands. Integrated density values were normalized to β-tubulin (n = 3/genotype: ***p < 0.0001).

(B) Immunostaining of CK*Nrg1f/f mutants (12 months) shows absence of markers of inflammatory astroglia (GFAP) and microglia (MAC3) in the CA1 region (brackets). The scale bars represent 50 μm and 10 μm (inset).

(C) Western blot analysis of hippocampal protein lysates from mutants (CK*Nrg1f/f) and Nrg1f/f controls (con) at 15 months after MK-801 treatment. ErbB4, ErbB4 receptor; GluR1, AMPA receptor subunit 1; NR1, NR2B, NMDA receptor subunit 1 and 2B; nACh7, nicotinic acetylcholine receptor α7 subunit; PSD95, postsynaptic density protein 95. β-tubulin was used as a loading control.

(D) Densitometric quantification of integrated density values normalized to β-tubulin (n = 3/genotype).

(E) Reduced motor activity of CK*Nrg1f/f mutants (n = 15) in the open-field test compared with Nrg1f/f controls (n = 10) at 3 months (p < 0.05).

(F) Tendency for reduced responsiveness to MK-801 in CK*Nrg1f/f mutants compared with Nrg1f/f controls at 3 to 4 months. Motor activity in the open field was measured as the distance traveled during 4 min time intervals and expressed as percentage relative to baseline activity obtained individually before MK-801 treatment (single dose at 0.3 mg/kg). Arrow indicates MK-801 injection at 0.3 mg/kg. Asterisk, unspecific protein band.

(G) Unchanged motor activity of CK*Nrg1f/f mutants (age 12 to 13 months) in the open-field test (n = 9–13), n.s., not significant.

(H) Reduced MK-801-induced hyperactivity in CK*Nrg1f/f mutants compared with Nrg1f/f controls at 12 to 13 months (n = 9–13; significant effect of genotype, F2, 150 = 5.43, *p < 0.05; significant effect of time, F29, 4500 = 7.08, ***p < 0.0001; two-way ANOVA for repeated measures).

(I) Tendency for reduced contextual fear conditioning in CK*Nrg1f/f mice in comparison to Nrg1f/f controls at 3 to 4 months (n = 9–11; p = 0.0576). Fear-conditioned learning is displayed as the percentage of time mice show freezing behavior during a 2 min time period after re-exposure to context or cue (tone). Baseline: freezing during initial exposure to context prior to cue exposure. Base cue: freezing during exposure to new context prior to cue re-exposure. FC, fear conditioning.

(J) Reduced contextual and cued fear conditioning in CK*Nrg1f/f mutant mice at 12 to 13 months (n = 9–12; *p < 0.05). Error bars represent SEM.

experiments in Emx1-Cre*Nrg1f/f mutants (Emx*Nrg1f/f), in which NRG1 is eliminated in projection neurons and glial cells beginning at embryonic day (E) 10 (Figure 3A; Gorski et al., 2002). Emx*Nrg1f/f mutants were born at the expected Mendelian frequency and survived into adulthood. Despite a reduction of cortical NRG1 protein levels by ~80% in Emx*Nrg1f/f
Figure 2. NRG1 Deficiency in Cortical Projection Neurons Disrupts Hippocampal Synaptic Plasticity and Increases Inhibitory Neurotransmission

(A) Top, sample fEPSPs traces from CK*Nrg1f/f mutant and Nrg1f/+ control mice. Bottom, paired-pulse ratio (fEPSP slope second stimulus/fEPSP slope first stimulus) at interstimulus intervals of 25–75 ms was reduced in CK*Nrg1f/f mutants (n = 12) in comparison to Nrg1f/+ controls (n = 11).

(B) Top, sample traces of responses before and after HFS. Bottom, LTP elicited by HFS (fEPSP slopes) for CK*Nrg1f/f mutants (n = 11) and Nrg1f/+ controls (n = 12). HFS application at time point 0. Both the magnitude of STP (maximal responses within 1 min after HFS) and LTP (responses 50–60 min after HFS) were reduced in CK*Nrg1f/f mice.

(C) Representative sEPSC recordings from CA1 pyramidal neurons of a CK*Nrg1f/+ mutant and Nrg1f/+ control.

(legend continued on next page)
mutants (Figure 3B), gray and white matter structures appeared to be normally developed (Figures S2A and S2C). In contrast to ErbB4 mutants (Neddens and Buonanno, 2010), the number of GAD67-positive cells in the hippocampus (Figures S C and 3E) and their cortical-layer-specific distribution (Figures 3D, 3F, and S2D) were not altered in Emx*Nrg1f/f mutant mice (Figures 3M–3O) and mIPSC frequency was almost doubled in Nrg1-tg mice (Figures 5A–5C). In contrast, sIPSC frequency was almost doubled in Nrg1-tg mice (Figures 5D–5F). Similarly, mEPSC amplitude and frequency were unaltered (Figures S4A and S4B), whereas mIPSC frequency was enhanced in Nrg1-tg mice (Figures S5G and S5H). When we examined LTP at the SC-CA1 synapse, we observed no changes in the input-output curve or paired-pulse facilitation (Figure S4C); however, both STP and LTP were reduced in Nrg1-tg mice (Figure S5). These findings suggest that elevated CRD-NRG1 signaling shifts the excitatory-inhibitory synaptic balance in CA1 pyramidal neurons toward enhanced inhibition, mostly due to increased synaptic input from GABAergic interneurons and/or enhanced presynaptic GABA release.

Elevated CRD-NRG1 Expression Increases Inhibitory Neurotransmission and Disrupts Synaptic Plasticity in the Hippocampus

CRD-NRG1 is the most prominent NRG1 variant in the mature cortex (Liu et al., 2011). To test the hypothesis that CRD-NRG1 serves as a signal for ErbB-receptor-mediated synaptic tuning, we examined transgenic mice (Nrg1-tg) that express CRD-NRG1 from the neuronal Thy1.2 promoter (Michailov et al., 2004). Transgene expression was initiated around E16 (Figure S2B) and prominent in neocortex and hippocampus of the adult brain (Figures 4A and 4B). CRD-NRG1 accumulated on the surface of projection neurons but was absent from interneurons, astrocytes, and oligodendrocytes (Figure 4C). Western blot analysis revealed increased steady-state levels of phosphorylated ErbB4 receptor in the hippocampus of Nrg1-tg mice at 4 months of age (Figure 4D). Thus, Nrg1-tg mice model chronically elevated CRD-NRG1 expression (derived from cortical projection neurons) and ErbB4 receptor hyperphosphorylation beginning at late embryonic stages.

In the absence of markers of neurodegeneration and inflammation (Figure S2C), we performed in vivo MRI and found that lateral ventricular volume was reduced in Emx*Nrg1f/f mutant and increased in Nrg1-tg mice, whereas total brain volume was not changed at 12 months of age (Figures 4E–4G and S3F). Ventricular volume was already increased in 6-month-old Nrg1-tg mice (Figures S3C–S3E), but not at P14 (Figures S3A and S3B), suggesting a young adult onset. Thus, ventricular enlargement, a condition frequently observed in schizophrenia patients, is associated with elevated CRD-NRG1 expression, but not with NRG1 deficiency in our mouse models.

Next, we studied synaptic transmission in CA1 pyramidal neurons of Nrg1-tg mice and wild-type littermate controls (wild-type [WT]). Both sEPSC amplitude and frequency were unaltered in Nrg1-tg mice (Figures 5A–5C). In contrast, sIPSC frequency was increased in Emx*Nrg1f/f mutant and control (n = 8) mice. Similarly, mEPSC amplitude and frequency were unaltered (Figures S4A and S4B), whereas mIPSC frequency was enhanced in Nrg1-tg mice (Figures S5G and S5H). When we examined LTP at the SC-CA1 synapse, we observed no changes in the input-output curve or paired-pulse facilitation (Figure S4C); however, both STP and LTP were reduced in Nrg1-tg mice (Figure S5). These findings suggest that elevated CRD-NRG1 signaling shifts the excitatory-inhibitory synaptic balance in CA1 pyramidal neurons toward enhanced inhibition, mostly due to increased synaptic input from GABAergic interneurons and/or enhanced presynaptic GABA release.

To address whether impaired LTP was related to changes in the molecular composition of cortical synapses, we prepared cortical synaptosomes from Nrg1-tg mice, Emx*Nrg1f/f mutant, and controls. Western blot analyses identified differences in the synaptic levels of CRD-NRG1 in Nrg1-tg mice in comparison to Emx*Nrg1f/f mutant mice, but protein levels for ErbB4, PSD95, as well as GluN1 and GluN2B subunits of NMDA receptors were not changed (Figures 5J and S5A), consistent with the unaltered transcription of ErbB4 and various neurotransmitter receptors (Figures S5B–S5E). To obtain global protein expression profiles from Nrg1-tg mice, we analyzed their proteome using a label-free shotgun-liquid chromatography–mass spectrometry (LC-MS²) approach. This resulted in the identification of 40 differentially expressed proteins in the hippocampus of 4-month-old Nrg1-tg mice (see Table S1), including several that play a role in functional and structural plasticity at glutamatergic synapses (CaM kinase II α and β subunits, protein phosphatase 2B, and septin 6; Figure 5K). Next, we identified interaction networks and canonical pathways using the Ingenuity Pathways KnowledgeBase (IPKB) (http://www.ingenuity.com). A significant network showed interactions of the uploaded proteins with a cluster of glutamate receptors (Figure 5L; Table S2). The most significant canonical pathway was LTP (not shown; p < 0.001), consistent with our electrophysiological findings in Nrg1-tg mice.
A

- EmxCre⁺
- Nrg1^{ff}

- Recombination

- E10
- P0
- P5
- P20

B

- con KO con KO con KO

- KO KO KO KO

- NRG1/hubulin

- **

C

- GAD67
- NeuN

- CA1

D

- wt
- Nrg1^{ff}
- Emx*Nrg1^{ff}

E

- # GAD67⁺ cells/mm²

- n.s.

F

- # GAD67⁺ cells/cortical layer

- I II/III IV V VI

G

- Nrg1^{ff}
- Emx*Nrg1^{ff}

H

- Cumulative probability

- sEPSC amplitude (pA)

- **

I

- Cumulative probability

- sEPSC frequency (Hz)

- n.s.

K

- Cumulative probability

- sIPSC amplitude (pA)

- ***

L

- Cumulative probability

- sIPSC frequency (Hz)

- ***

M

- Nrg1^{ff}
- Emx*Nrg1^{ff}

N

- Cumulative probability

- mEPSC amplitude (pA)

- ***

O

- Cumulative probability

- mEPSC frequency (Hz)

- n.s.

P

- Nrg1^{ff}
- Emx*Nrg1^{ff}

Q

- Cumulative probability

- mIPSC amplitude (pA)

- *

R

- Cumulative probability

- mIPSC frequency (Hz)

- n.s.

(legend on next page)
Abnormal Spine Growth and Reduced Numbers of Parvalbumin-Expressing Interneurons in the Neocortex of Nrg1-tg Mice

We next addressed whether increased CRD-NRG1 expression also affects neocortical network functions. To visualize dendrites and spines, we crossed Nrg1-tg mice with a Thy1.2-YFP transgenic mouse line, which expresses yellow fluorescent protein (YFP) in a subset of projection neurons in cortical layer V (Hirling et al., 2003). In vivo imaging of dendrites in Thy1.2-YFP/Nrg1-tg double transgenic mice (YFP/Nrg1) and Thy1.2-YFP controls (con) at 3 to 4 months of age by two-photon laser-scanning microscopy (2P-LSM) revealed no difference in the number of primary dendrites (con: 7.24 ± 0.17; YFP/Nrg1: 7.18 ± 0.09; Figures 6A, 6B, and 6C) and branch points of apical dendrites up to the marginal zone (MZ) (con: 4.03 ± 0.32; YFP/Nrg1: 4.23 ± 0.22; Figures 6A and 6C). Next, we applied stimulated emission depletion (STED) nanoscopy through a cranial window above the somatosensory cortex to resolve structural details of apical dendrites and spines of layer V projection neurons in the MZ of live mice (Berning et al., 2012). Total spine frequency was not changed in YFP/Nrg1 mice (con: 0.35 ± 0.02 μm⁻¹, YFP/Nrg1: 0.36 ± 0.02 μm⁻¹; Figure 6D). Using in vivo STED nanoscopy, we observed several previously defined morphological spine classes (“mushroom,” “cup,” “stubby,” “filopodium,” and “bifurcated”; Hering and Sheng, 2001; Trommald et al., 1996) and determined their frequency (Figures 6A and 6B). In YFP/Nrg1 mice, the frequency of bifurcated spines was increased more than 3-fold (con: set as 1 ± 0.31; YFP/Nrg1: 3.74 ± 0.82; p < 0.01), and we observed a concomitant, albeit not significant, reduction in the frequency of other spine types, except for filopodium-like spines (Figure 6E). Furthermore, the numbers of mushroom and cup spines were longer in YFP/Nrg1 mice compared with controls (mushroom: con: 0.98 ± 0.04 μm, YFP/Nrg1: 1.2 ± 0.05 μm, p < 0.05; cup: con: 1.05 ± 0.06 μm, YFP/Nrg1: 1.27 ± 0.02 μm, p < 0.05; Figure 6F).

To assess functional consequences of the selective increase of bifurcated spines, we performed recordings in cortical layer V neurons using acute cortical slices prepared from the same neocortical area that was used for in vivo STED nanoscopy. Both mEPSC frequency and amplitude were increased in YFP/Nrg1 mice (Figures 6G–6I). In addition, analysis of mEPSC kinetics revealed that the mean slope of onset was increased and the distribution shifted toward events with faster onset in YFP/Nrg1 mice (con: 12.77 ± 0.23 pA/ms; YFP-Nrg1: 18.24 ± 0.26 pA/ms; Figure 6J). Given that perisomatic events display faster onset in comparison to dendritic events (Miles et al., 1996), these data suggest that changes in spine structure may reduce effective glutamatergic synaptic transmission by changing the NMDA/AMPA ratio or postsynaptic receptor kinetics at distal sites.

CRD-NRG1 serves as a permissive signal for the migration of cortical interneurons in vitro (Flames et al., 2004), suggesting that interneuron migration could be affected in Nrg1-tg mice. Immunostaining for GAD67 and parvalbumin (PV) at P14 revealed minor changes in the corticoal distribution of GAD67⁺ cells in Nrg1-tg mice (Figure 7A), but not in the total number of neocortical (Figures 7A and 7B) and hippocampal interneurons (Figures S6D and S6E). To visualize PV⁺ interneurons in vivo, we crossbred Nrg1-tg mice with PV-GFP transgenic mice that express GFP under control of regulatory sequences from the PV gene (Meyer et al., 2002). 2P-LSM in vivo imaging of PV-GFP/Nrg1-tg double transgenic mice at 3 months of age revealed a lower number of GFP⁺ cells in cortical layers II/III and V and a reduction in the total number of GFP⁺ cells by ~20% compared with PV-GFP controls (Figures 7C and 7D). We observed a similar reduction of GFP⁺ cells in a second mouse line, which expresses epitope-tagged CRD-NRG1 (Velanac et al., 2012). PV⁺ interneurons formed normal numbers and cortical positions of GAD67⁺ interneurons in the neocortex (Figures 7A and 7B). Nrg1-tg mutants in comparison to controls (Nrg1f/− and WT), Bregma, −1.7; scale bars, 50 μm (NeuN); 100 μm (GAD67).

Figure 3. Embryonic NRG1 Signaling Is Not Essential for Neurite Migration

(A) Embryonic NRG1 elimination using the Emx1-Cre driver line overlaps with network integration of cortical interneurons (IN). X-gal histochemistry on brain section from an Emx-Cre;Ros26lacZ double-transgenic mouse (P46) shows Cre-mediated recombination of lacZ reporter in forebrain projection neurons and glial cells. The scale bar represents 1 mm.

(B) Western blot analysis of cortical protein extracts from Emx*NRG1f/+ and Nrg1+/− con at 4 months. Arrowheads, full-length and processed NR1 protein. Asterisk, unspecific protein band. (Right) Densitometric quantification of NRG1 isoforms (140 and 95 kDa). Integrated density values were normalized to β-tubulin (n = 3/genotype; “p < 0.01).

(C) Normal numbers and cortical positions of GAD67⁺ interneurons in Emx*NRG1f/+ mutants during cortical maturation. Immunostaining for GAD67 on coronal brain sections from Emx*NRG1f/+ and controls (Nrg1f/− and WT) at P14. Higher magnifications (right) show the hippocampal CA1 region (boxed in overviews). The scale bars represent 500 μm and 50 μm (CA1 region).

(D) Immunostaining for NeuN and GAD67 (higher magnification of boxed area f in C) reveals normal layering (I–VI, cortical layers) and interneuron positions in the somatosensory cortex of Emx*NRG1f/+ mutants in comparison to controls (Nrg1f/− and WT), Bregma, −1.7; scale bars, 50 μm (NeuN); 100 μm (GAD67).

(E) Quantification of GAD67⁺ interneurons in the hippocampus (marked area e in C) of Emx*NRG1f/+ mutants and controls (Nrg1f/− and WT), n = 6/genotype.

(F) Quantification of GAD67⁺ interneurons in the neocortex (boxed area f in C) of Emx*NRG1f/+ mutants and controls (Nrg1f/− and WT), n = 6/genotype. Error bars represent SEM.

(G) Representative sEPSC recordings of CA1 pyramidal neurons from Emx*NRG1f/+ and Nrg1f/− controls.

(H and I) Cumulative probability plots of sEPSC amplitude (H) and frequency (I) in CA1 pyramidal neurons from Emx*NRG1f/+ mutants (n = 9) and Nrg1f/− controls (n = 8).

(J) Representative sEPSC recordings of pyramidal neurons from Emx*NRG1f/+ and Nrg1f/− controls.

(K and L) Cumulative probability plots of sIPSC amplitude (K) and frequency (L) in pyramidal neurons from Emx*NRG1f/+ mutants (n = 6) and Nrg1f/− controls (n = 7).

(M) Representative mEPSC recordings of pyramidal neurons from Emx*NRG1f/+ and Nrg1f/− controls.

(N and O) Cumulative probability plots of mEPSC amplitude (N) and frequency (O) in pyramidal neurons from Emx*NRG1f/+ mutants (n = 8) and Nrg1f/− controls (n = 8).

(P) Representative mIPSC recordings of pyramidal neurons from Emx*NRG1f/+ and Nrg1f/− controls.

(Q and R) Cumulative probability plots of mIPSC amplitude (Q) and frequency (R) in pyramidal neurons from Emx*NRG1f/+ mutants (n = 10) and Nrg1f/− controls (n = 10).

*p < 0.05; **p < 0.01; ***p < 0.001; Mann–Whitney U test.
interneurons provide perisomatic inhibition to projection neurons. Electrophysiological recordings in acute cortical slices (as above) revealed a moderate increase in mIPSC frequency in layer V projection neurons (Figures 7E–7G). Analysis of mIPSC kinetics showed a shift toward events with slower onset, such that the mean slope of event onset was reduced in Nrg1-tg mice.

Finally, we tested whether increased CRD-NRG1 expression causes behavioral dysfunctions. The neuromuscular junction in Nrg1-tg mice is severely compromised (W.J. Thompson, personal communication), which renders these mice less suitable for behavioral analysis. Therefore, we examined a mouse line (HA-Nrg1-tg), in which hemagglutinin (HA) epitope-tagged CRD-NRG1 is expressed under control of the same Thy1.2 cassette as in Nrg1-tg mice.
(Figure S7A; Velanac et al., 2012). Similar to Nrg1-tg mice, we observed HA-CRD-NRG1 expression on the surface of cortical projection neurons, ventricular enlargement, and a reduced number of GFP+ interneurons in HA-Nrg1-tg mice (Figures S/B–S7D). At 2 to 3 months of age, the distance traveled in the open-field test was not altered in HA-Nrg1-tg mice (m; males: WT: 44.17 ± 1.93, HA-Nrg1-tg: 42.49 ± 2.21; females: WT: 42.92 ± 1.41, HA-Nrg1-tg: 42.31 ± 2.32; Figure S7E). However, HA-Nrg1-tg mice spent less time in the center of the open-field arena (males: WT: 24.16% ± 3.77%, HA-Nrg1-tg: 10.61% ± 2.13%; females: WT: 21.11% ± 2.11%, HA-Nrg1-tg: 6.87% ± 2.41%; Figure 7I) and male mice displayed more frequent defecation (males: WT: 1.778 ± 0.586; HA-Nrg1-tg: 4.13 ± 0.72; Figure S7F), in line with increased anxiety. In addition, HA-Nrg1-tg mice performed fewer rearings (males: WT: 56.28 ± 3.86, HA-Nrg1-tg: 39 ± 4.64; females: WT: 48.5 ± 2.92, HA-Nrg1-tg: 31.1 ± 4.53; Figure 7J), suggesting diminished exploratory behavior. Assessment of sensorimotor gating (Figures 7K and 7L) showed a profound PPI deficit in HA-Nrg1-tg mice. Moreover, they displayed an increased startle response (males: WT: 184.9 ± 39.56, HA-Nrg1-tg: 344.9 ± 42.07; females: WT: 71.43 ± 12.51, HA-Nrg1-tg: 280.2 ± 19.24; Figure S7G). In summary, our findings in loss- and gain-of-function mouse mutants support a bell-shaped model of NRG1-mediated synaptic functions (Figure 8), according to which an optimal level of NRG1 signaling is required for balanced synaptic transmission and plasticity in the cortex.

DISCUSSION

In this study, we carried out a systematic characterization of conditional Nrg1 mutants and Nrg1-tg mice with increased CRD-NRG1 expression. The main findings of this study are as follows: (1) Both NRG1 deficiency and increased CRD-NRG1 expression led to disrupted hippocampal plasticity and imbalanced excitatory and inhibitory neurotransmission. (2) Elevated CRD-NRG1 expression resulted in ventricular enlargement and abnormal spine growth. (3) Morphological changes in Nrg1-tg mice were accompanied by increased anxiety levels and disrupted sensorimotor gating. Our analysis of CK*Nrg1-tg mutants has shown that NRG1 is required for hippocampal LTP. This finding contrasts with a study in heterozygous Nrg1 mutants, in which hippocampal LTP was increased (Shamir et al., 2012). These discrepancies most likely reflect differences in the spatiotemporal profile of Nrg1 deletion in conventional heterozygous mutants in comparison to conditional Nrg1-null mutants and point to the modulatory role of distinct levels of NRG1 during synaptic transmission. In addition, loss of NRG1 in CK*Nrg1-tg and Emx1*Nrg1-tg mutant mice consistently resulted in increased IPSC amplitudes in hippocampal pyramidal neurons. We conclude that expression or responsiveness of postsynaptic GABA receptors on pyramidal neurons is enhanced in the absence of NRG1 signaling. Our findings in Nrg1 conditional mutants contrast with those in ErbB4-null mutants, in which inhibitory circuits are compromised (Del Pino et al., 2013; Fazzari et al., 2010; Neddens and Buonanno, 2010; Wen et al., 2010) and LTP is enhanced (Chen et al., 2010; Pitcher et al., 2008; Shamir et al., 2012). Thus, we suggest that NRG1 is an important, but not the sole, mediator of ErbB4 signaling in the brain and that ErbB4 integrates signals from multiple ligands, such as neuregulin 2 (Carraway et al., 1997), during the regulation of inhibitory circuits.

Similar to NRG1 deficiency, elevated CRD-NRG1 expression in projection neurons disrupted hippocampal LTP. In addition, we observed increased IPSC frequency and abnormal spine growth in pyramidal cells of CRD-NRG1 transgenic mice. These effects appeared to be specific for CRD-NRG1 as overexpression of Ig-domain-containing NRG1 (Ig-NRG1 or NRG1 type I) in transgenic mice using the same Thy1.2 promoter led to impaired gamma oscillation, whereas LTP formation was not affected (Deakin et al., 2012). A distinct transgenic mouse line with forebrain-specific overexpression of Ig-NRG1 shows reduced mEPSC frequency and mIPSC amplitudes but unaltered mIPSC frequency (Yin et al., 2013a). These data suggest that CRD-NRG1, mainly acting via juxtacrine signaling, and Ig-NRG1, serving as a soluble ligand in paracrine signaling, provide distinct functions in the modulation of excitatory and inhibitory neurotransmission. Together, our data demonstrate an imbalance in the excitatory/inhibitory (E/I) ratio toward pronounced inhibition in conditional Nrg1 mutants and CRD-NRG1 transgenic mice. We speculate that alterations in the E/I ratio in response to altered NRG1 signaling could lead to deficits in cortical synchronization, as implicated in schizophrenia (Uhlhaas and Singer, 2010).
Based on the phenotypic profile of CRD-NRG1 overexpressing mice, we suggest that human NRG1 risk haplotypes exert a gain-of-function effect. This hypothesis is supported by the finding that the schizophrenia risk haplotype HapICE is associated with increased CRD-NRG1 expression in the prefrontal cortex (Weickert et al., 2012). In addition, elevated CRD-NRG1 expression induced chronic ErbB4 hyperphosphorylation in the cortex of CRD-NRG1 transgenic mice, consistent with findings in postmortem brain from schizophrenia patients (Hahn et al., 2006). We propose that elevated CRD-NRG1 signaling impairs synaptic plasticity via two mechanisms. First, it alters the cortical E/I ratio. Specifically, we hypothesize that increased juxtacrine signaling by CRD-NRG1 during development hyperstimulates ErbB4 receptors in PV+ interneurons, which increases feedforward inhibition by promoting the formation of GABAergic presynaptic terminals on pyramidal neurons, as indicated by elevated IPSC frequency. Increased feedforward inhibition could compromise LTP formation. Second, it induces abnormal spine growth. Elevated expression levels of CRD-NRG1 result in its accumulation in the somatodendritic compartment of pyramidal neurons. This could initiate abnormal backsignaling, such as aberrant interactions of the C-terminal domain of NRG1 with LIM kinase 1 (Wang et al., 1998; Yin et al., 2013a), a major regulator of spine growth (Mizuno, 2013). Whereas we favor this model, ErbB4 expressed in projection neurons and interneurons was shown to regulate spine growth (Cooper and Koleske, 2014).

Figure 6. Abnormal Spine Growth in Nrg1-tg Mice
(A) 2P-LSM imaging of cortical layer V projection neurons. Fluorescent image stacks were recorded in Thy1.2-YFP*Nrg1-tg (YFP-Nrg1) and Thy1.2-eYFP (con) mice at 3 to 4 months. 3D volume of the somatosensory cortex (bregma = −2) from the marginal zone (MZ) to layer V, rendered from fluorescent image stacks. Box and bracket indicate areas used for quantification in (B) and (C). The scale bar represents 40 μm.
(B) The number of primary dendrites (quantified in boxed area in A) was not altered in YFP*Nrg1 compared with control mice (n = 10 neurons/mouse; n = 7 mice/genotype).
(C) The number of apical dendrite branch points (from cell soma in layer V to the MZ, indicated by bracket in A) was not altered in YFP*Nrg1 compared with control mice (n = 10 neurons/mouse; n = 7 mice/genotype).
(D) In vivo STED nanoscopy of dendrites in the MZ derived from cortical layer V projection neurons of a con and a YFP*Nrg1 mouse. A bifurcated-type spine (boxed) is shown at higher magnification. The scale bar represents 2 μm.
(E) Relative frequency of spine classes (controls set as 1) in the MZ of YFP-Nrg1 mice and controls (30 dendrites per mouse; con, n = 4 mice; YFP-Nrg1, n = 3; *p < 0.05; **p < 0.01; one way ANOVA, post hoc Tukey’s test). fp, filopodium; mr, mushroom.
(F) Length (μm) of spine neck (for mushroom, cup, and bifurcated spines) or entire spine (stubby and filopodium). Necks of mushroom- and cup-like spines were longer in YFP-Nrg1 mice (30 dendrites/mouse; con, n = 4 mice; YFP-Nrg1, n = 3; *p < 0.05; **p < 0.01; one way ANOVA; post hoc Tukey’s test).
(G) Representative recordings of glutamatergic mEPSCs from YFP+ projection neurons in cortical layer V of control and YFP-Nrg1 mice.
(H and I) Cumulative probabilities of mEPSC frequencies (H) and amplitudes (I) in YFP+ neurons from control (n = 12) and YFP-Nrg1 (n = 13) mice. ***p < 0.001; Mann-Whitney U test.
(J) Onset kinetics expressed as normalized histograms of rise slopes (peak amplitude in pA over time of onset in ms) of glutamatergic mEPSCs. Mean values and the significance of onset kinetics are indicated by squares positioned relative to the x axis. *p < 0.01; Mann-Whitney U test.
Del Pino et al., 2013; Yin et al., 2013b). Thus, abnormal spine morphology could directly result from chronic hyperstimulation of ErbB4 receptors. In summary, our data support the hypothesis that abnormal spine growth, observed in schizophrenia patients (Penzes et al., 2011), could be induced by hyperstimulated CRD-NRG1 signaling.

Ventricular enlargement is the most-replicated endophenotype in schizophrenia, and variants of the NRG1 gene are associated with increased lateral ventricle volume in schizophrenia patients (Mata et al., 2009). We observed reduced ventricular size in Emx*Nrg1^{1ff} mutants but enlarged lateral ventricles in Nrg1^{-tg} mice. Ventricular size is not affected in Ig-NRG1 transgenic mice (P. Harrison, personal communication). These findings suggest a specific role of CRD-NRG1 in the regulation of ventricular volume. Thus, chronically increased CRD-NRG1 expression could represent a risk factor for ventricular enlargement observed in schizophrenia patients.

In summary, our in vivo data demonstrate that both chronically reduced and increased NRG1 signaling interferes with balanced neurotransmission and synaptic plasticity. Our

Figure 7. Disturbed Inhibitory Circuitry, Anxiety-like Behavior, and Reduced PPI in Nrg1^{-tg} Mice

(A) (Left) Immunostaining for Gad67 on coronal brain sections from WT and Nrg1^{-tg} mice at P14 (somatosensory cortex; bregma ~1.7). The scale bars represent 100 μm. (Right) Quantification of Gad67⁺ interneurons (n = 6/genotype; *p < 0.05, Mann-Whitney U test). I–VI, cortical layers; WM, white matter.

(B) (Left) Immunostaining for PV as in (A). The scale bars represent 100 μm. (Right) Quantification of PV⁺ interneurons across all cortical layers (n = 6/genotype; Mann-Whitney U test).

(C) 2P-LSM of PV-GFP*Nrg1^{-tg} and PV-GFP control mice. Depicted are 3D projections-rendered live-imaging stacks of a cortical column (250 × 250 × 500 μm³; 2 μm stack interval) from the MZ to layer V.

(D) Quantification of GFP⁺ interneurons in layers I–V from 2P-LSM live-imaging stacks. Note that parts of layers V and VI could not be imaged.

(E) Representative recordings of GABAergic mIPSCs from YFP⁺ projection neurons in layer V of Thy1.2-YFP*Nrg1^{-tg} (YFP-Nrg1) and Thy1.2-YFP (con) mice. (F and G) Cumulative probabilities of mIPSC frequencies (F) and amplitudes (G) in YFP⁺ neurons from YFP-Nrg1 (n = 17) and control (n = 15) mice.

(H) Onset kinetics expressed as normalized histograms of rise slopes (peak amplitude in pA over time to onset in ms) of GABAergic mIPSCs. Mean values and the significance of onset kinetics are indicated by squares positioned relative to the x axis. *p < 0.05; Mann-Whitney U test.

(I) HA-Nrg1^{-tg} mice (age 2 to 3 months) spent less time in the center of the open-field arena when compared with WT.

(J) HA-Nrg1^{-tg} mice performed less rearings than WT in the open-field test.

(K and L) Reduced PPI in male (K) and female (L) HA-Nrg1^{-tg} mice. Males: effect of genotype F_{1,32} = 4.31; *p < 0.05 for prepulse 70 dB; females: effect of genotype F_{1,24} = 16.09; ***p < 0.001; two-way ANOVA; Bonferroni posttest. (I–L): WT: males, n = 18; females, n = 18; HA-Nrg1^{-tg} mice: males, n = 16; females, n = 10. Error bars represent SEM.

Figure 8. Bell-Shaped Model of NRG1-Mediated Signaling in the Cortex

(A) (Left) Immunostaining for GAD67 on coronal brain sections from WT and Nrg1^{-tg} mice at P14 (somatosensory cortex; bregma ~1.7). The scale bars represent 100 μm. (Right) Quantification of GAD67⁺ interneurons (n = 6/genotype; *p < 0.05, Mann-Whitney U test). I–VI, cortical layers; WM, white matter.

(B) Both chronically reduced and increased levels of NRG1 signaling cause enhanced inhibitory synaptic strength and reduced excitatory synaptic strength, leading to a dysbalanced E/I ratio and impaired hippocampal LTP.
findings extend an “inverted U” model of NRG1 signaling (Role and Talmage, 2007), and we propose a bell-shaped model, according to which an “optimal” level of NRG1 is required for the establishment, refinement, and “homeostasis” of synaptic neurotransmission. Although chronically reduced NRG1 signaling in the brain impairs synaptic functions, our data suggest that it is chronically increased CRD-NRG1 signaling that phenocopies several endophenotypes described for schizophrenia patients. Thus, CRD-NRG1 transgenic mice could provide a robust preclinical model for further studies of schizophrenia and to facilitate the discovery and development of treatment strategies.

EXPERIMENTAL PROCEDURES

Transgenic and Mutant Mice

The generation and genotyping of conditional null mutants of Nrg1 (Li et al., 2002) and transgenic lines CRD-NRG1 (Michailov et al., 2004), HA-CRD-NRG1 (Vélanac et al., 2012), PV-GFP (Meyer et al., 2002), Emx1-Cre (Gorski et al., 2002), and CamKII-Cre (Michielo et al., 1999) has been described. Primer sequences are available upon request. All animal experiments were carried out in compliance with approved animal policies of the Max Planck Institute of Experimental Medicine.

RNA Analysis

Total RNA was extracted using Qiazo reagent (QIAGEN). cDNA was synthesized from total RNA using random nonamer primers and Superscript III RNase H reverse transcriptase (Invitrogen). Quantitative real-time PCR was carried out using the ABI Prism 7700 Sequence Detection System as described (Brinkmann et al., 2008) and analyzed with 7500 Fast System SDS software version 1.3 (Applied Biosystems) and GraphPad Prism 5.0. PCR primer sequences are available upon request.

Protein Analysis

Brain tissue was homogenized in sucrose or radioimmunoprecipitation assay buffer with protease inhibitors (Complete tablets; Roche). For western blotting, 5–50 µg of protein lysate was size separated on 8% SDS-polyacrylamide gels and blotted onto polyvinylidene fluoride membranes (Hybond-P; Invitrogen) according to manufacturer’s instructions. Membranes were incubated with primary antibodies as described in Supplemental Experimental Procedures. The densitometric analysis of scanned enhanced chemiluminescence films was carried out using ImageJ and GraphPad Prism 5.0. Data are displayed as SEM, and statistical significance was tested using a Mann-Whitney U test.

Synaptosomes and Synaptic Plasma Membrane Preparation

Synaptosomes were isolated by a sucrose density gradient technique (Dodd et al., 1981) modified to isolate synaptosomes from small quantities of starting material (detailed in Supplemental Experimental Procedures). Synaptosomes were fractionated into Triton X-100 soluble (synaptic membranes) and insoluble (mainly postsynaptic density proteins) fractions by ultracentrifugation (Mizoguchi et al., 1989). The Triton X-100 insoluble fraction was solubilized using 2% SDS buffer. Analysis was performed using SDS-PAGE and western blotting as described above and in Supplemental Experimental Procedures.

Proteomics

Proteins were extracted from hippocampal tissue, followed by separation on SDS-polyacrylamide gels and enzymatic digestion with trypsin. Resulting peptides were analyzed on a Waters quadrupole time-of-flight Premier mass spectrometer as described (Martins-de-Souza et al., 2007). Wilcoxon signed-rank tests were used to determine statistical significance (p < 0.05).

Histology and Immunostaining

Free-floating vibratome (40–50 µm) or paraffin sections (5 µm) were incubated overnight with primary antibodies as described in Supplemental Experimental Procedures. Sections were incubated with secondary antibodies Cy2 (1:10,000; Jackson ImmunoResearch), Cy3 (1:10,000; Jackson ImmunoResearch), Alexa 488 and Alexa Fluor 555 (1:2,000; Invitrogen) for 1 hr at room temperature. For the analysis of neurodegenerative changes, paraplast-embedded sections (5–7 µm) were stained with hematoxylin and eosin staining (Merck) and Cresyl Violet. Digital images were obtained using 510-meta LSM and Axiopt (Zeiss) and DMRXa (Leica) microscopes. All images were processed with ImageJ.

Electrophysiology

Transverse slices (300 µm) were cut from mouse brain (10–12 weeks old) and transferred to a recording chamber filled with artificial cerebrospinal fluid. Field recording data were digitized by DigiData 1322A and analyzed using Clampfit 10.0 (Molecular Devices). During whole-cell patch recordings, siPSCs were recorded at a holding potential of −70 mV in the presence of 10 µM 6-cyano-7-nitroquinoxaline-2,3-dione and 40 µM 2-amino-5-phosphonopentanoic acid; siEPSCs were recorded in the presence of 5 µM strychnine and 5 µM bicuculline. For mIPSC and mEPSC recording, 0.5 µM tetrodotoxin was added to the bath solution. Data acquisition and analysis was carried out using pClamp 10.0 (Molecular Devices), MiniAnalysis (SynaptoSoft), and Prism 4 (GraphPad). Statistical significance was evaluated using a two-tailed unpaired Student’s t test with Welch’s correction or a Mann-Whitney U test. Significance level was set to p < 0.05, and values are displayed as SEM. For details, see the Supplemental Experimental Procedures.

MRI and Volumetry

Mice were anesthetized with 5% isofluorane, intubated, and kept under anesthesia with 1%–1.5% isofluorane in oxygen and ambient air (1:1.5). MRI was performed at a field strength of 2.35 T (Bruker Biospin MRI) using a T1-weighted 3D FLASH sequence as described (Natt et al., 2002), reaching an isotropic resolution of 117 µm. Total brain volume (excluding olfactory bulb, cerebellum, and brainstem) and, separately, the size of the lateral and third ventricles, cerebellum, olfactory bulb, and brainstem were determined by manually drawing respective regions of interest on up to 50 contiguous horizontal MRI sections.

In Vivo 2P-LSM and In Vivo STED Nanoscopy

Two-photon microscopy (Agarwal et al., 2012) and STED imaging (Beming et al., 2013) were performed as described. See the Supplemental Experimental Procedures for details.

Behavioral Testing

For behavioral experiments, age-matched CK-Cre*Nrg1f/f, CK-Cre*Nrg1f/+, Nrg1f/f, HA-Nrg1f, and WT mice at 12–15 weeks of age were used. Three mice per cage were housed in a room with a 12 hr light-dark cycle (lights on at 9:00 a.m.) with ad libitum access to food and water. Behavioral tests were conducted in a blinded fashion during the light phase (10:00 a.m.–5:00 p.m.) as described in Brzožka et al. (2010). Data are displayed as SEM, and statistical significance was analyzed using a Mann-Whitney U test and a two-way ANOVA with Bonferroni posttest for multiple group comparisons. See the Supplemental Experimental Procedures for details. All experiments were performed with permission from the local Animal Care and Use Committee (Bezirksregierung Braunschweig) in accordance with the German Animal Protection Law.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, seven figures, and four tables and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2014.07.026.

AUTHOR CONTRIBUTIONS

A.A. generated CamKII-Cre*Nrg1f and Emx1-Cre*Nrg1f mice and carried out biochemical, histological and gene expression analysis on NRG1 conditional mutants and transgenic mice. M.Z., I.T.-D., Z.T., and W.Z. performed electrophysiological analysis. T.U. contributed to histological, biochemical, and behavioral analysis of Emx1-Cre*Nrg1f mutants and transgenic mice. K.R.,...
We thank A. Fahrendolz and M. Floerl for excellent technical assistance. We also thank C. Casper and D. Flemming for help with animal husbandry. We thank C. Birchmeier for providing conditional NRG1 mutant mice, R. Klein for CamkII-Cre mice, K. Jones for Emx1-Cre mice, F. Kirchhoff for Thy1.2-YFP mice, and H. Monyer for PV-GFP mice. We thank N. Brosé, S. Papilo, S. Wichert, and members of the Department of Neurogenetics for helpful discussions. A.A. is supported by a Postdoctoral Fellowship from the National Multiple Sclerosis Society. W.Z. is supported by the I2K of the University of Münster Medical School (Zha3-005-14). M.J.R. and M.M.B. were supported by the Deutsche Forschungsgemeinschaft (Klinische Forschunggruppe [KFO] 241: RO 4076/1-1), S.W.H., W.Z., M.H.S., and K.-A.N. acknowledge grant support from the Deutsche Forschungsgemeinschaft (DFG Research Center Molecular Physiology of the Brain [CMPB] and SFB TRR58 to W.Z.). M.H.S. is supported by a Heisenberg fellowship from the Deutsche Forschungsgemeinschaft. K.-A.N. holds an ERC Advanced Grant.

Received: November 25, 2013
Revised: April 4, 2014
Accepted: July 16, 2014
Published: August 14, 2014

REFERENCES

